

VCS Module

VMD0001

ESTIMATION OF CARBON STOCKS IN THE ABOVE- AND BELOWGROUND BIOMASS IN LIVE TREE AND NON-TREE POOLS (CP-AB)

Version 1.2

27 November 2023

Sectoral Scope 14

WINROCK

NTERNATIONAL

Avoided Deforestation Partners and Climate Focus convened the development of version 1.0 of this module. It was authored by Silvestrum Climate Associates (Igino Emmer and Eveline Trines), Winrock International (Dr. Sandra Brown and Dr. Tim Pearson), Carbon Decisions International (Lucio Pedroni), and TerraCarbon (David Shoch).

Version 1.1 of this module was developed by Verra.

Version 1.2 of this module was prepared by Verra with support from Tim Pearson.

silvestrum

CLIMATE ASSOCIATES

₹vcs CONTENTS

1		SUMMARY DESCRIPTION OF THE MODULE
2		DEFINITIONS
3		APPLICABILITY CONDITIONS
4		PROCEDURES
	4.1	Frequency of measurement for baseline above- and belowground biomass stocks
	4.2	Part 1: Aboveground tree biomass: Estimation of carbon stocks in aboveground tree biomass (<i>CAB_tree, i</i>)4
	4.3	Part 2: Belowground tree biomass: Estimation of carbon stocks in belowground tree biomass (<i>CBB_tree, i</i>)7
	4.4	Part 3: Aboveground non-tree biomass: Estimation of carbon stocks in aboveground non-tree biomass (<i>CAB_nontree, i</i>)8
	4.5	Part 4: Belowground non-tree biomass: Estimation of belowground carbon stocks in non-tree vegetation (<i>CBB_nontree, i</i>)
5		DATA AND PARAMETERS 12
	5.1	Data and Parameters Available at Validation12
	5.2	Data and Parameters Monitored17
D	ວວບ	JMENT HISTORY

1 SUMMARY DESCRIPTION OF THE MODULE

This module allows for ex ante estimation of carbon stocks in above- and belowground tree and non-tree woody biomass in the baseline case (for both pre- and post-deforestation stocks) and project case and for ex post estimation of change in carbon stocks in above- and belowground tree biomass in the project case.

2 DEFINITIONS

All terms in the following module are used inline with VCS program definitions.

3 APPLICABILITY CONDITIONS

This module is applicable to all forest types and age classes.

4 PROCEDURES

4.1 Frequency of measurement for baseline above- and belowground biomass stocks

Measurements of initial stocks employed in the baseline must take place within ± 5 years of the project start date, for simplicity referred to here as stocks at t=0.

Above- and belowground biomass stock estimates are valid in the baseline (i.e. treated as constant) for 10 years, after which they must be re-estimated from new field measurements. For each stratum, where the re-measured estimate is within the 90% confidence interval of the t=0 estimate, the t=0 stock estimate takes precedence and is re-employed, and where the re-measured estimate is outside (i.e. greater than or less than) the 90% confidence interval of the t=0 estimate, the new stock estimate takes precedence and is used for the subsequent period.

4.2 Part 1: Aboveground tree biomass: Estimation of carbon stocks in aboveground tree biomass ($C_{AB \ tree,i}$)

The mean carbon stock in aboveground tree biomass per unit area is estimated based on field measurements in sample fixed area plots or sample points using prisms employing representative random or systematic sampling.

Two methods are available for sampling: Fixed Area Plots and Point Sampling with Prisms, both using Allometric Equations method to estimate biomass from measured tree dimensions.

4.2.1 Part 1, Option 1: Fixed Area Plots with Allometric Equation method

Step 1: Determine the tree dimensions such as diameter (DBH, at typically 1.3 m [4.3 ft] aboveground level or above buttress where they exist, and total height H), of all the trees above some minimum *DBH* in the sample plots. The exact tree dimensions and minimum size tree to be measured in sample plots will be specified by the allometric equation selected in Step 2. Any minimum values employed in inventories are held constant for the duration of the project.

Step 2: Select or develop an appropriate and validated allometric equation for forest type/group of species j (e.g. tropical humid forest or tropical dry forest) or for each species or family *j* (group of species) found in the inventory (hereafter referred to as species group). Any equation selected may only be used if applicability has been demonstrated and validated per guidance in the parameters section below.

Step 3: Estimate carbon stock in aboveground biomass for each individual tree of species group *j* in the sample plot located in stratum i using the selected or developed allometric equation applied to the tree dimensions resulting from Step 1 and sum the carbon stocks in the sample plot:

$$C_{AB_tree,sp,i} = \sum_{j}^{S} \sum_{l=1}^{N_{j,sp,i}} f_j (X, Y ...) * CF_j$$
(1)

Where:

$C_{AB_tree,sp,i}$	=	Carbon stock in aboveground biomass of trees in plot sp in stratum i; t C
CF _j	=	Carbon fraction of biomass for species group j ; t C t ⁻¹ d.m.
f _j (X,Y)	=	Above ground biomass of trees based on allometric equation for species group j
		based on measured tree variable(s); t. d.m. tree ⁻¹
i	=	1, 2, 3,M strata
j	=	1, 2, 3 S tree species
l	=	1, 2, 3, $N_{j,sp,i}$ sequence number of individual trees of species group j in
		sample plot sp in stratum i

Step 4: Calculate the mean carbon stock in aboveground biomass for each stratum, converted to carbon dioxide equivalents:

$$C_{AB_tree,i} = \sum_{sp=1}^{P_i} \frac{C_{AB_{tree},sp,i}}{A_{sp,i}} * \frac{44}{12}$$
(2)

Where:

C _{AB_tree,i}	=	Mean aboveground biomass carbon stock in stratum <i>i</i> ; t CO ₂ -e ha ^{\cdot1}
$C_{AB_{tree},sp,i}$	=	Above ground biomass carbon stock of trees in sample plot sp of stratum i , t C
A _{sp,i}	=	Area of sample plot sp in stratum i; ha

sp =	1, 2, 3	P _i sample plots in stratum <i>i</i>
------	---------	---

- = 1, 2, 3, ... M strata
- - = Ratio of molecular weight of CO₂ to carbon, t CO₂-e t C⁻¹

i

- 44 12

4.2.2 Part 1, Option 2: Point Sampling with Allometric Equation method

Step 1: Determine the tree dimensions such as diameter (DBH, at typically 1.3 m [4.3 ft] above ground level and total height H), of all the trees above some minimum DBH in the sample plots. The exact tree dimensions and minimum size tree to be measured at sample points will be specified by the allometric equation selected in Step 2. Any minimum values employed in inventories are held constant for the duration of the project.

Step 2: Select or develop an appropriate and validated allometric equation for each species group *j* found in the inventory. Any equation selected may only be used if applicability has been demonstrated and validated per guidance in the parameters section below.

Step 3: Estimate carbon stock in aboveground biomass for each individual tree I of species group *j* at the sample point located in stratum *i* using the selected or developed allometric equation applied to the tree dimensions resulting from Step 1, and sum the carbon stocks for the sample point:

$$C_{AB_tree,j,sp,i,t} = \sum_{j=1}^{S} \sum_{l=1}^{N_{j,sp,i}} \left(\frac{f_j(X, Y...) * CF_j}{(3.1415/10000) * ((DBH/100) * D: RAD)^2} \right)$$
(3)

Where:

$C_{AB_tree,j,sp,i,t}$	=	Carbon stock in above ground biomass of trees of species group j at point sp in stratum $i;$ t C
CFj	=	Carbon fraction of biomass for species group j ; t C t ⁻¹ d.m.
f _j (X,Y)	=	Allometric equation for species <i>j</i> linking measured tree variable(s) to aboveground biomass of trees; t. d.m. tree ⁻¹
DBH	=	Diameter at breast height of tree I of species group j at point sp in stratum i at time t , cm
D: RAD	=	Ratio of DBH to plot radius, specific to prism Basal Area Factor (BAF) employed in point sampling
1	=	1, 2, 3, $N_{j,sp,i}$ sequence number of individual trees of species group <i>j</i> in sample plot <i>sp</i> in stratum <i>i</i>
i	=	1, 2, 3,M strata
j	=	<i>1, 2, 3</i> S tree species

Step 4: Calculate the mean carbon stock in aboveground biomass for each stratum, converted to carbon dioxide equivalents:

$$C_{AB_tree,i} = \frac{1}{N} \sum_{sp=1}^{P_i} C_{AB_tree,sp,i} * \frac{44}{12}$$
(4)

Where:

C _{AB_tree,i}	=	Mean aboveground biomass carbon stock in stratum <i>i</i> ; t CO ₂ -e ha ^{-1}
C _{ABtree} , sp, i	=	Above ground biomass carbon stock of trees at point sp , in stratum i, t C
N	=	Number of sample points in stratum <i>i</i> ; dimensionless
sp	=	1, 2, 3 P _i sample plots in stratum <i>i</i>
i	=	1, 2, 3,M strata
44	=	Ratio of molecular weight of CO2 to carbon, t CO2-e t C ⁻¹
12		

4.3 Part 2: Belowground tree biomass: Estimation of carbon stocks in belowground tree biomass $(C_{BB_tree,i})$

The mean carbon stock in belowground tree biomass per unit area is estimated based on field measurements in sample fixed area plots or sample points using prisms, employing representative random or systematic sampling. The mean carbon stock in belowground tree biomass per unit area is estimated based on field measurements of aboveground parameters in sample plots. Root to shoot ratios are coupled with the Allometric Equations method Part 1 Options 1 and 2, to calculate belowground from aboveground biomass.

4.3.1 Part 2, Option 1: Fixed area plots with root to shoot ratio

Step 1: Calculate the belowground tree biomass carbon stock for each plot:

The above ground tree biomass carbon stocks in each plot can be estimated by allometric equation method described in Part 1 Option 1.

$$C_{BB_tree,sp,i} = R * C_{AB_tree,sp,i}$$
(5)

Where:

 $C_{BB_tree,sp,i}$ = Belowground tree biomass carbon stock of trees in plot *sp*, in stratum *i*; t C $C_{AB_tree,sp,i}$ = Aboveground tree biomass carbon stock of trees in plot *sp* in stratum *i*; t C R = Root to shoot ratio; t root d.m. t⁻¹ shoot d.m. i = 1, 2, 3, ...M strata

Step 2: Calculate the mean belowground tree biomass carbon stock for each stratum, converted to carbon dioxide equivalents:

$$C_{BB_tree,i} = \sum_{sp=1}^{P_i} \frac{C_{BB_tree,sp,i}}{A_{sp,i}} * \frac{44}{12}$$
(6)

Where:

C_{BB_tree,i} = Mean belowground tree biomass carbon stock in stratum *i*; t CO₂-e ha⁻¹ C_{BB_tree,sp,i} = Mean belowground tree biomass carbon stock of trees in plot *sp*, in stratum *i*, t C

A _{sp,i}	 Area of sample plot sp in stratum i; ha
sp	= 1, 2, 3 P _i sample plots in stratum <i>i</i>
i	= 1, 2, 3,M strata
$\frac{44}{12}$	= Ratio of molecular weight of CO_2 to carbon, t CO_2 -e t C^{-1}

4.3.2 Part 2, Option 2: Point sampling with root to shoot ratio

Step 1: Calculate the belowground tree biomass carbon stock for each point sampled:

The above ground tree biomass carbon stocks in each point sampled can be found using the allometric equation method described in Part 1 Option 2 above.

$$C_{BB_tree,sp,i} = R * C_{AB_tree,sp,i} \tag{7}$$

Where:

 $C_{BB_tree,sp,i}$ = Belowground tree biomass carbon stock of trees in point *sp*, in stratum *i*; t C $C_{AB_tree,sp,i}$ = Aboveground tree biomass carbon stock of trees in point *sp* in stratum *i*; t C R = Root to shoot ratio; t root d.m. t⁻¹ shoot d.m. i = 1, 2, 3, ...M strata

Step 2: Calculate the mean belowground tree biomass carbon stock for each stratum, converted to carbon dioxide equivalents:

$$C_{BB_tree,i} = \frac{1}{N} \sum_{sp=1}^{P_i} C_{BB_tree,sp,i} * \frac{44}{12}$$
(8)

Where:

$C_{BB_tree,i}$	=	Mean belowground tree biomass carbon stock in stratum <i>i</i> ; t CO ₂ -e ha^{-1}			
$C_{BB_{tree},Sp,i}$	=	lean belowground tree biomass carbon stock of trees at point sp, in stratum <i>i</i> ,			
		t C			
Ν	=	Number of sample points in stratum <i>i</i> ; dimensionless			
sp	=	1, 2, 3 P _i sample plots in stratum <i>i</i>			
i	=	1, 2, 3,M strata			
$\frac{44}{12}$	=	Ratio of molecular weight of CO2 to carbon, t CO2-e t C ⁻¹			

4.4 Part 3: Aboveground non-tree biomass: Estimation of carbon stocks in aboveground non-tree biomass ($C_{AB_nontree,i}$)

The mean carbon stocks in the non-tree aboveground biomass pool per unit area are estimated based on previously published or default data¹ or field measurements. Non-tree woody

¹ Where using published or default data these data must be derived from peer-reviewed literature and must be appropriate to the species in the project area or to the geographic region, elevation and precipitation regime in the project area

aboveground biomass pool includes trees smaller than the minimum tree size measured in the tree biomass pool, all shrubs, and all other non-herbaceous live vegetation².

Non-tree vegetation can be sampled using destructive sampling frames and/or, where suitable, in sampling plots in combination with an appropriate allometric equation for shrubs.

Calculate the mean carbon stock in aboveground non-tree biomass for each stratum by adding the mean carbon stock in aboveground biomass calculated using the sampling frame method to the mean carbon stock in aboveground biomass calculated using the allometric equation method.

$$C_{AB_nontree,i} = C_{AB_nontree_sample,i} + C_{AB_nontree_allometric,i}$$
(9)

Where:

C _{AB_nontree,i}	=	Mean above ground non-tree biomass carbon stock in stratum $i;$ t CO ₂ - e ha ⁻¹
C _{AB_nontree_sample,i}	=	Mean above ground non-tree biomass carbon stock in stratum <i>i</i> from sample frame method; t CO_2 -e ha ⁻¹
C _{AB_nontree_} allometric,	;=	Mean above ground non-tree biomass carbon stock in stratum <i>i</i> from allometric equation method; t CO_2 -e ha ⁻¹
i	=	1, 2, 3,M strata

4.4.1 Part 3, Option 1: Sampling Frame Method

In a stratum where non-tree vegetation is spatially variable, large frames should be used (e.g. 1-2 m radius circle). Where non-tree vegetation is homogeneous, smaller frames can be used (e.g. 30 cm radius).

Generally, the frame is placed at a randomly or systematically selected GPS point or tree plot. At each location, all vegetation originating from inside the frame is cut at the base and weighed. One representative subsample of the cut material is weighed to obtain its wet mass. The collected subsample is taken to a laboratory, oven dried and weighed to determine the dry mass. The wet to dry ratio of the subsample is then used to estimate the dry mass of the original sample.

To estimate the mean carbon stock per unit area in the aboveground non-tree biomass for each stratum:

$$C_{AB_nontree_sample,i} = \sum_{sfp=1}^{SFP_i} \frac{C_{AB_nontree_sample,sfp,i}}{A_{sfp,i}} * CF * \frac{44}{12}$$
(10)

Where:

 $C_{AB_nontree_sample,i}$ = Carbon stock in aboveground non-tree vegetation in sampling plot in strata i from sample method; t CO₂-e ha⁻¹

² Pursuant to AR-WG 21 that the GHG emissions from removal of herbaceous vegetation are insignificant in A/R CDM project activities and therefore these emissions can be neglected in A/R baseline and monitoring methodologies

C _{AB} nontree sample sfn.i	 Biomass in aboveground non-tree vegetation in sample plot sfp in
	stratum <i>i</i> from sampling frame method; kg d.m.
CF	 Carbon fraction of dominant non-tree vegetation j; t C t d.m.⁻¹
A _{sfp,i}	 Area of non-tree sampling plot sfp in stratum i; ha
sfp	= 1, 2, 3 SFPi sample plots in stratum i
i	= 1, 2, 3,M strata
44	= Ratio of molecular weight of CO ₂ to carbon, t CO ₂ -e t C ⁻¹
12	

4.4.2 Part 3, Option 2: Allometric Equation Method

This method may be used for shrubs, bamboo, or other vegetation types where individuals can be clearly delineated.

Step 1: Select or develop an appropriate allometric equation (if possible species-specific, or if not from a similar species).

Step 2: Estimate carbon stock in aboveground biomass for each individual I in the sample plot r located in stratum i using the selected or developed allometric equation:

$$C_{AB_nontree_allometric,i,r} = \sum_{j=1}^{S} \sum_{l=1}^{N_{i,r}} f_j (vegetation parameters) * CF_j$$
(11)

Where:

$C_{AB_nontree_allometric,i,r}$	=	Carbon stock in above ground biomass of non-tree sample plot r in
		stratum <i>i</i> from allometric equation method; t C
CF _j	=	Carbon fraction of biomass for species j ; t C t ⁻¹ d.m.
f_j (vegetationparameters)	=	Aboveground biomass from allometric equation for species <i>j</i> linking parameters such as stem count, diameter of crown, height, or others; t. d.m. individual ⁻¹
i	=	1, 2, 3,M strata
r	=	1, 2, 3,R non-tree allometric method sample plots in stratum i
j	=	1, 2, 3 S species
l	=	1, 2, 3, $N_{i,r}$ sequence number of individuals in sample plot <i>r</i> in stratum <i>i</i>

Step 3: Calculate the mean carbon stock in aboveground biomass for each stratum, converted to carbon dioxide equivalents:

$$C_{AB_nontree_allometric,i} = \sum_{r=1}^{R_i} \frac{C_{AB_nontree_allometric,r,i}}{Ar_i} * \frac{44}{12}$$
(12)

Where:

 $C_{AB_nontree_allometric,i}$ = Mean aboveground biomass carbon stock in stratum *i* from allometric equation method; t CO₂-e ha⁻¹

$C_{AB_nontree_allometric,r,i}$	 Aboveground biomass carbon stock in non-tree vegetation in sample plot r of stratum i from non-tree allometric sample plots, t C
Ar _i	= Area of non-tree allometric method sample plot in stratum <i>i</i> ; ha
r	= 1, 2, 3,R non-tree allometric method sample plots in stratum i
i	= 1, 2, 3,M strata
<u>44</u> 12	= Ratio of molecular weight of CO_2 to carbon, t CO_2 -e t C^{-1}

4.5 Part 4: Belowground non-tree biomass: Estimation of belowground carbon stocks in non-tree vegetation ($C_{BB_nontree,i}$)

The mean carbon stock in belowground biomass per unit area is estimated based on field measurements of aboveground parameters in sample plots. Root to shoot ratios are coupled with the aboveground biomass estimate to calculate belowground from aboveground biomass.

Step 1: Select an appropriate root to shoot ratio for non-tree biomass.

Step 2: Use the appropriate root to shoot ratio to estimate the belowground biomass from aboveground biomass carbon stock in non-tree vegetation in sample plot sp of stratum i, t C:

$$C_{BB_nontree,i,sp} = C_{AB_nontree,i,sp} * R$$
(13)

Where:

C _{AB_nontree,i,sp}	=	Above ground biomass carbon stock in non-tree vegetation in sample plot $\ensuremath{\textit{sp}}$ of
		stratum <i>i</i> ; t C
$C_{BB_nontree,i,sp}$	=	Below ground biomass carbon stock in non-tree vegetation in sample plot sp of stratum $i;$ t C
R	=	Root to shoot ratio; t root d.m. t ⁻¹ shoot d.m.
i	=	1, 2, 3,M strata
sp	=	1, 2, 3 Pi sample plots in stratum i

Step 3: Calculate the mean carbon stock in belowground biomass for each stratum, converted to carbon dioxide equivalents:

$$C_{BB_nontree,i} = \sum_{sp=1}^{P_i} \frac{C_{BB_nontree,sp,i}}{A_{sp,i}} * \frac{44}{12}$$
(14)

Where:

$C_{BB_nontree,i}$	=	Mean belowground biomass carbon stock in stratum <i>i</i> ; t CO ₂ -e ha ⁻¹
$C_{BB_nontree,sp,i}$	=	Below ground biomass carbon stock in non-tree vegetation in sample plot sp of stratum $i;$ t C
A _{sp,i}	=	Area of sample plot sp in stratum <i>i</i> ; ha
sp	=	1, 2, 3 Pi sample plots in stratum i
i	=	1, 2, 3,M strata

 $\frac{44}{12}$ = Ratio of molecular weight of CO₂ to carbon, t CO₂-e t C⁻¹

5 DATA AND PARAMETERS

5.1 Data and Parameters Available at Validation

Data / Parameter	CFj
Data unit	t C t d.m1
Description	Carbon fraction of dry matter in t C t-1 d.m.
Equations	1,3,10,11
Source of data	Values from the literature (e.g. IPCC 2006 INV GLs AFOLU Chapter 4 Table 4.3) shall be used if available, otherwise default value of 0.47 t C $t^{\rm 1}$ d.m. can be used
Value applied	Values from the literature or default value of 0.47 t C t $^{\rm 1}$ d.m.
Justification of choice of data or description of measurement methods and procedures applied	-
Purpose of Data	Calculation of baseline and project emissions
Comments	Where new species are encountered in the course of monitoring, new carbon fraction values must be sourced from the literature or otherwise use the default value.

Data / Parameter	D:RAD
Data unit	Dimensionless
Description	Ratio of DBH to plot radius, specific to prism Basal Area Factor (BAF) employed in point sampling
Equations	3
Source of data	-

Value applied		
	BAF (m²/ha)	D:RAD
	2	35.4
	3	28.9
	4	25.0
	5	22.4
	6	20.4
	7	18.9
	8	17.7
	9	16.7
Justification of choice of	-	
data or description of		
measurement methods		
and procedures applied		
Purpose of Data	Calculation of ba	aseline and project
Comments	-	

Data / Parameter	$f_j(X,Y)$		
Data unit	t d.m. tree ⁻¹		
Description	Allometric equation for species <i>j</i> linking measured tree variable(s) to aboveground biomass of living trees, expressed as t d.m. tree ⁻¹		
Equations	3		
Source of data	Equations must have been derived using a wide range of measured variables (e.g. DBH, Height, etc.) based on datasets that comprise at least 30 trees. Equations must be based on statistically significant regressions and must have an r^2 that is ≥ 0.8 .		
	The source of equation(s) shall be chosen with priority from higher to lower preference, as available, as follows:		
	a) National species-, genus-, family-specific;		
	 Species-, genus-, family-specific from neighboring countries with similar conditions (i.e. broad continental regions); 		
	c) National forest-type specific;		
	 Forest-type specific from neighboring countries with similar conditions (i.e. broad continental regions); 		
	e) Pan-tropical forest type-specific such as those provided Tables 4.A.1 to 4.A.3 of the GPG-LULUCF (IPCC 2003) or in		
	Pearson, T., Walker, S. and Brown, S. 2005. Sourcebook for Land Use, Land-Use Change and Forestry Projects. Winrock International and the World Bank Biocarbon Fund. 57pp. Available at:		

	<u>http://www.winrock.org/Ecosystems/files/Winrock-</u> <u>BioCarbon_Fund_Sourcebook-compressed.pdf</u>
	or in
	Chave, J., C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Folster, F. Fromard, N. Higuchi, T. Kira, JP. Lescure, B. W. Nelson, H. Ogawa, H. Puig, B. Riera, T. Yamakura. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99.
	Species-, genus- and family-specific allometric equations may not always be available, and may be difficult to apply with certainty in the typically species rich forests of the humid tropics, hence it is acceptable practice to use equations developed for regional or pantropical forest types, provided that their accuracy has been validated with direct site- specific data (per guidance below). If a forest-type specific equation is used, it should not be used in combination with species-specific equation(s) (i.e. it must be used for all tree species ³).
Value applied	-
Justification of choice of data or description of measurement methods and procedures applied	-
Purpose of Data	Calculation of baseline and project emissions
Purpose of Data Comments	Calculation of baseline and project emissions It is necessary to validate the applicability of equations used. Source data from which equation was derived should be reviewed and confirmed to be representative of the forest type/species and conditions in the project and covering the range of potential independent variable values.
Purpose of Data Comments	Calculation of baseline and project emissions It is necessary to validate the applicability of equations used. Source data from which equation was derived should be reviewed and confirmed to be representative of the forest type/species and conditions in the project and covering the range of potential independent variable values. Allometric equations can be validated either by: 1. Limited Measurements
Purpose of Data Comments	 Calculation of baseline and project emissions It is necessary to validate the applicability of equations used. Source data from which equation was derived should be reviewed and confirmed to be representative of the forest type/species and conditions in the project and covering the range of potential independent variable values. Allometric equations can be validated either by: Limited Measurements Select at least 30 trees (if validating forest type-specific equation, selection should be representative of the species composition in the project area, i.e. species representation in roughly in proportion to relative basal area). Minimum diameter of measured trees shall be 20cm and maximum diameter shall reflect the largest trees present or potentially present in the future in the project area (and/or leakage belt)
Purpose of Data Comments	 Calculation of baseline and project emissions It is necessary to validate the applicability of equations used. Source data from which equation was derived should be reviewed and confirmed to be representative of the forest type/species and conditions in the project and covering the range of potential independent variable values. Allometric equations can be validated either by: Limited Measurements Select at least 30 trees (if validating forest type-specific equation, selection should be representative of the species composition in the project area, i.e. species representation in roughly in proportion to relative basal area). Minimum diameter of measured trees shall be 20cm and maximum diameter shall reflect the largest trees present or potentially present in the future in the project area (and/or leakage belt) Measure DBH, and height to a 10 cm diameter top or to the first branch.
Purpose of Data Comments	 Calculation of baseline and project emissions It is necessary to validate the applicability of equations used. Source data from which equation was derived should be reviewed and confirmed to be representative of the forest type/species and conditions in the project and covering the range of potential independent variable values. Allometric equations can be validated either by: Limited Measurements Select at least 30 trees (if validating forest type-specific equation, selection should be representative of the species composition in the project area, i.e. species representation in roughly in proportion to relative basal area). Minimum diameter of measured trees shall be 20cm and maximum diameter shall reflect the largest trees present or potentially present in the future in the project area (and/or leakage belt) Measure DBH, and height to a 10 cm diameter top or to the first branch. Calculate stem volume from measurements and multiplying by species-specific density to gain biomass of bole.
Purpose of Data Comments	 Calculation of baseline and project emissions It is necessary to validate the applicability of equations used. Source data from which equation was derived should be reviewed and confirmed to be representative of the forest type/species and conditions in the project and covering the range of potential independent variable values. Allometric equations can be validated either by: Limited Measurements Select at least 30 trees (if validating forest type-specific equation, selection should be representative of the species composition in the project area, i.e. species representation in roughly in proportion to relative basal area). Minimum diameter of measured trees shall be 20cm and maximum diameter shall reflect the largest trees present or potentially present in the future in the project area (and/or leakage belt) Measure DBH, and height to a 10 cm diameter top or to the first branch. Calculate stem volume from measurements and multiplying by species-specific density to gain biomass of bole. Apply a biomass expansion factor to estimate total aboveground biomass from stem biomass. For broadleaf tropical trees this factor shall be:
Purpose of Data Comments	 Calculation of baseline and project emissions It is necessary to validate the applicability of equations used. Source data from which equation was derived should be reviewed and confirmed to be representative of the forest type/species and conditions in the project and covering the range of potential independent variable values. Allometric equations can be validated either by: 1. Limited Measurements Select at least 30 trees (if validating forest type-specific equation, selection should be representative of the species composition in the project area, i.e. species representation in roughly in proportion to relative basal area). Minimum diameter of measured trees shall be 20cm and maximum diameter shall reflect the largest trees present or potentially present in the future in the project area (and/or leakage belt) Measure DBH, and height to a 10 cm diameter top or to the first branch. Calculate stem volume from measurements and multiplying by species-specific density to gain biomass of bole. Apply a biomass expansion factor to estimate total aboveground biomass from stem biomass. For broadleaf tropical trees this factor shall be: 1.38 for trees 20-40cm

³ Note that forest type specific and pantropical equations will typically not include palm species or hollow-stem species (e.g. Cecropia) and so specific equations for these growth forms will be needed

0	1.25	for	trees	\geq	80cm4
---	------	-----	-------	--------	-------

 Plot all the estimated biomass of all the measured trees along with the curve of biomass against diameter as predicted by the allometric equation. If the estimated biomass of the measured trees are distributed both above and below the curve (as predicted by the allometric equation) the equation may be used. The equation may also be used if the measured individuals have a biomass consistently higher than predicted by the equation. If plotting the biomass of the measured trees indicates a systematic bias to overestimation of biomass (>75% of the trees above the predicted curve) then destructive sampling must be undertaken, or another equation selected.

or

- 2. Destructive Sampling
- Select at least five trees (if validating forest type-specific equation, selection should be representative of the species composition in the project area, i.e. species representation in roughly in proportion to relative basal area) at the upper end of the range of independent variable values existing in the project area
- Measure DBH and commercial height and calculate volume using the same procedures/equations used to generate commercial volumes to which BCEFs will be applied
- Fell and weigh the aboveground biomass to determine the total (wet) mass of the stem, branch, twig, leaves, etc. Extract and immediately weigh subsamples from each of the wet stem and branch components, followed by oven drying at 70 degrees C to determine dry biomass;
- Determine the total dry weight of each tree from the wet weights and the averaged ratios of wet and dry weights of the stem and branch components.
- Plot the biomass of all the harvested trees along with the curve of biomass against diameter as predicted by the allometric equation. If the biomass of the harvested trees are distributed both above and below the curve (as predicted by the allometric equation) the equation may be used. The equation may also be used if the harvested individuals have a biomass consistently higher than predicted by the equation. If plotting the biomass of the harvested trees indicates a systematic bias to overestimation of biomass (>75% of the trees below the predicted curve) then additional destructive sampling must be undertaken, or another equation selected.

Details of destructive sampling measurements are given in:

Brown, S. 1997. Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134, Rome, Italy.

Available at http://www.fao.org/docrep/W4095E/W4095E00.htm

If using species-specific equations, and new species are encountered in the course of monitoring, new allometric equations must be sourced from the literature and validated, if necessary, as per requirements and procedures above.

Data / Parameter

f; (vegetation parameters)

⁴ Biomass expansion factors conservatively selected from destructively sampled trees in Bolivia and Belize, reference to IPCC GPG LULUCF BEF values and expert opinion.

Data unit	t. d.m. individual ⁻¹
Description	Allometric equation for non-tree species / linking parameters such as stem count, diameter of crown, height, or others to aboveground biomass of an individual
Equations	1
Source of data	Whenever available, use allometric equations that are species-specific or group of species-specific, provided the equations have been derived using a wide range of diameters and heights, based on datasets that comprise at least 30 individuals. Project participants may create project location specific equation where appropriate.
Value applied	-
Justification of choice of data or description of measurement methods and procedures applied	 It is necessary to verify the applicability of existing equations used. Allometric equations can be verified either by: Review of source data from which equation was derived and confirmation that the source data is representative of the species and conditions in the project and covers the range of potential sizes. Or Destructive Sampling Selecting at least five individuals covering the range of sizes existing, and felling and weighing the aboveground biomass to determine the total (wet) mass of the stem and branch components; Extracting and immediately weighing subsamples from each of the wet stem and branch components, followed by oven drying at 70°C to determine thy biomass; Determining the total dry weight of each individual from the wet weights and the averaged ratios of wet and dry weights of the stem and branch components. If the biomass of the harvested individual is within ±10% of the mean values predicted by the selected allometric equation, and is not biased, then mean values from the equation may be used. Otherwise, the equation must be re-parameterized to conform to the validation data before using, or another equation: Follow guidance in: Pearson, T., Walker, S. and Brown, S. 2005. Sourcebook for Land Use, Land-Use Change and Forestry Projects. Winrock International and the World Bank Biocarbon Fund. 57pp. Available at: http://www.winrock.org/Ecosystems/files/Winrock-BioCarbon_Fund_Sourcebook-compressed.pdf
Purpose of Data	Calculation of baseline and project emissions
Comments	-

Data / Parameter	R
Data unit	t root d.m. t ⁻¹ shoot d.m.

Description	Root to shoot ratio appropriate to species or forest type / biome; note that as defined here, root to shoot ratio is applied as belowground biomass per unit area:aboveground biomass per unit area (not on a per stem basis)					
Equations	5,7,13	5,7,13				
Source of data	The source of data shall be chosen with priority from higher to lower preference as follows: Detailed data collected using common practices for root sampling in the area; Globally forest type-specific or eco-region-specific (e.g. IPCC GPG- LULUCF). Root to shoot ratios for tropical and subtropical forests modified from Table 4.4. in IPCC GL AFOLU					
Value applied				D		
	Domain	Ecological Zone	Aboveground biomass	Root-to- shoot ratio	Range	
		Tropical	<125 t.ha-1	0.20	0.09-0.25	
	Tranical	rainforest	>125 t.ha-1	0.24	0.22-0.33	
	порісаї	Tropical	<20 t.ha-1	0.56	0.28-0.68	
		rainforest	>20 t.ha-1	0.28	0.27-0.28	
		Subtropi-	<125 t.ha-1	0.20	0.09-0.25	
	Subtro- pical	forest	>125 t.ha-1	0.24	0.22-0.33	
		Subtropi-	<20 t.ha-1	0.56	0.28-0.68	
		forest	>20 t.ha-1	0.28	0.27-0.28	
Justification of choice of data or description of measurement methods and procedures applied	-					
Purpose of Data	Calculation of baseline and project emissions					
Comments	 Guidelines for Conservative Choice of Default Values: 1) If in the sources of data mentioned above, default data are available for conditions that are similar to the project (similar forest or vegetation type; same climate zone), then mean values of default data may be used and considered conservative. 2) Global values may be selected from Table 4.4 (modified as given above) of the AFOLU Guidelines (IPCC 2006), by choosing a climatic zone and forest type that most closely matches the project are available. 					

5.2 Data and Parameters Monitored

Data / Parameter:	Asp
Data unit:	ha

Description:	Area of sample plots in ha
Equations	2,6,14
Source of data:	Recording and archiving of number and size of sample plots
Description of measurement methods and procedures to be applied:	N/A
Frequency of monitoring/recording:	Monitoring must occur at least every ten years for baseline renewal. Where carbon stock enhancement is included monitoring shall occur at least every five years
QA/QC procedures to be applied:	N/A
Purpose of data:	Calculation of baseline and project emissions
Calculation method:	N/A
Comments:	Where carbon stock estimation occurs only for determination of the baseline this parameter shall be known <i>ex-ante</i> . Where part of project monitoring, <i>ex-ante</i> the number and area of sample plots shall be estimated based on projected sample effort relative to projections of growth and emissions.

Data / Parameter:	Ν
Data unit:	Dimensionless
Description:	Number of sample points
Equations	4,8
Source of data:	Recording and archiving of number of sample points
Description of measurement methods and procedures to be applied:	N/A
Frequency of monitoring/recording:	Monitoring must occur at least every ten years for baseline renewal. Where carbon stock enhancement is included monitoring shall occur at least every five years
QA/QC procedures to be applied:	N/A
Purpose of data:	Calculation of baseline and project emissions
Calculation method:	N/A
Comments:	Where carbon stock estimation occurs only for determination of the baseline this parameter shall be known <i>ex-ante</i> . Where part of project monitoring, <i>ex-ante</i> the number of sample plots shall be estimated

based on projected sample effort relative to projections of growth and emissions.

Data / Parameter:	DBH
Data unit:	cm
Description:	Diameter at breast height of a tree in cm
Equations	1,3
Source of data:	Field measurements in sample plots
Description of measurement methods and procedures to be applied:	Typically measured 1.3m aboveground. Measure all trees above some minimum <i>DBH</i> in the sample plots. The minimum <i>DBH</i> varies depending on tree species and climate; for instance, the minimum <i>DBH</i> may be as small as 2.5 cm or as high as 20 cm, but for himud tropical forests 10 cm is commonly used. Minimum DBH employed in inventories is held constant for the duration of the project.
Frequency of monitoring/recording:	Monitoring must occur at least every ten years for baseline renewal. Where carbon stock enhancement is included monitoring shall occur at least every five years
QA/QC procedures to be applied:	Standard quality control / quality assurance (QA/QC) procedures for forest inventory including field data collection and data management shall be applied. Use or adaptation of QA/QCs already applied in national forest monitoring, or available from published handbooks, or form the <i>IPCC GPG LULUCF 2003</i> , is recommended.
Purpose of data:	Calculation of baseline and project emissions
Calculation method:	N/A
Comments:	Where carbon stock estimation occurs only for determination of the baseline this parameter shall be known <i>ex-ante</i> . Where part of project monitoring, <i>ex-ante</i> DBH shall be estimated based on projections of growth.

Data / Parameter:	Ast
Data unit:	m ⁻²
Description:	Area of one sampling frame
Equations	10
Source of data:	Recording and archiving size of sampling frame plot
Description of measurement methods and procedures to be applied:	N/A

Frequency of monitoring/recording:	Monitoring must occur at least every ten years for baseline renewal. Where carbon stock enhancement is included monitoring shall occur at least every five years.
QA/QC procedures to be applied:	N/A
Purpose of data:	Calculation of baseline and project emissions
Calculation method:	N/A
Comments:	Shall be known ex-ante.

Data / Parameter:	Ar
Data unit:	Hectares
Description:	Total area of all non-tree allometric method sample plots in stratum <i>i</i>
Equations	12
Source of data:	Recording and archiving size of non-tree allometric method sample plot
Description of measurement methods and procedures to be applied:	N/A
Frequency of monitoring/recording:	Monitoring must occur at least every ten years for baseline renewal. Where carbon stock enhancement is included monitoring shall occur at least every five years.
QA/QC procedures to be applied:	N/A
Purpose of data:	Calculation of baseline and project emissions
Calculation method:	N/A
Comments:	Where carbon stock estimation occurs only for determination of the baseline this parameter shall be known <i>ex-ante</i> . Where part of project monitoring, <i>ex-ante</i> the number and area of sample plots shall be estimated based on projected sample effort relative to projections of growth and emissions.

Data / Parameter:	Н
Data unit:	m
Description:	Total height of tree
Equations	1,3
Source of data:	Field measurements in sample plots

Description of measurement methods and procedures to be applied:	N/A
Frequency of monitoring/recording:	Monitoring must occur at least every ten years for baseline renewal. Where carbon stock enhancement is included monitoring shall occur at least every five years.
QA/QC procedures to be applied:	N/A
Purpose of data:	Calculation of baseline and project emissions
Calculation method:	N/A
Comments:	Where carbon stock estimation occurs only for determination of the baseline this parameter shall be known <i>ex-ante</i> . Where part of project monitoring, <i>ex-ante</i> height shall be estimated based on projections of growth.

DOCUMENT HISTORY

Version	Date	Comment
v1.0	3 Dec 2010	Initial version
v1.1	10 Oct 2013	Typographic error in equation 10 has been corrected.
v1.2	27 Nov 2023	Update to latest VCS methodology template
		Removal of references to VM0007