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1 SOURCES 

This tool is based on and uses the most recent versions of the following VCS Program 

methodologies and modules: 

• VM0032 Methodology for the Adoption of Sustainable Grasslands through Adjustment 

of Fire and Grazing  

• VM0042 Methodology for Improved Agricultural Land Management 

• VMD0053 Model Calibration, Validation, and Uncertainty Guidance for the 

Methodology for Improved Agricultural Land 

2 SUMMARY DESCRIPTION 
Digital soil mapping (DSM) is the use of spatially explicit computer models to predict soil 

properties using gridded ancillary variables (McBratney et al. 2003). Numerous studies have 

demonstrated the ability to quantify soil organic carbon (SOC) using DSM techniques (Castaldi 

et al. 2019; Fu et al. 2024; Gomez et al. 2008; Ratnayake et al. 2016; Sothe et al. 2022; 

Szatmári et al. 2021; Venter et al. 2021; Wadoux and Heuvelink 2023; Zhou et al. 2020). Most 

focus on SOC content, measured as a proportion or percentage of oven-dry soil mass. Others 

have quantified SOC stock in units of total mass or mass density (e.g., mass of SOC per unit 

area). These studies encompass a wide range of geographic locations, statistical procedures, 

and measurement sources, including airborne and satellite remote sensing. However, specific 

guidance on appropriate calibration, validation, and uncertainty estimation is needed to 

support the use of DSM in agricultural land management (ALM) carbon projects to ensure 

robust and verifiable quantification 

This tool contains protocols for using digital soil mapping (DSM) as a quantification technology 

when applying existing VCS methodologies. The tool specifically addresses: 

• DSM model calibration, model validation,1 and uncertainty estimation. The calibration 

and validation of a DSM model to predict SOC content in units of proportion or 

 
1 The VCS Standard, v4.7 defines validation as “… the independent assessment of the project by a 
validation/verification body that determines whether the project and its GHG statement conforms with the VCS 
Program rules and evaluates the reasonableness of assumptions, limitations, and methods that support a claim 

about the outcome of future activities.” This tool distinguishes between project validation under the VCS Standard 

and model validation. Model validation, as defined in VCS module VMD0053 Model Calibration, Validation, and 

Uncertainty Guidance for the Methodology for Improved Agricultural Land Management, v2.0, is “the process of 
evaluating model performance relative to measured values.” VMD0053, v2.0 states that a validated model 

demonstrates “satisfactory performance in terms of goodness of fit and characterization of model prediction 
error.” 
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percentage by soil mass, bulk density (BD), SOC stock, and the change in SOC stock 

over time during the project crediting period. 

• collection of physical soil samples, including guidelines on sampling design and 

stratification, depth increments, and the selection of laboratory methods. 

• selection and processing of remote sensing and other environmental covariates. 

• use of DSM to initialize and/or true-up a biogeochemical process-based model (BGCM) 

(e.g., Quantification Approach 1: Measure and Model in VCS methodology VM0042 

Improved Agricultural Land Management).  

• use of DSM as a primary measurement technology (e.g., Quantification Approach 2: 

Measure and Re-Measure in VM0042, v2.1 and the Measured or Modeled 

quantification approaches identified in VM0032 Methodology for the Adoption of 

Sustainable Grasslands through Adjustment of Fire and Grazing). 

By providing a generalized approach to the quantification of SOC stocks in vegetated or bare 

agricultural soils, this tool enables model calibration, model validation, and uncertainty 

estimation to be conducted in compliance with the guidelines established under the applied 

VCS methodology.  

2.1 Key Concepts and Rationale: Validation with Safeguards 

The procedures documented in this tool provide a robust framework for using DSM to quantify 

SOC stocks and stock changes in agricultural lands. The approach relies on detailed soil 

sampling, model validation procedures, and safeguards – including “true-up” procedures and 

equations for the calculations of cumulative carbon stock change – to ensure long-term 

accuracy and flexibility for real-world projects. The tool supports two primary applications: 

Use Case 1: DSM to initialize and/or true-up a BGCM 

In Use Case 1, methods described in the tool provide SOC stock values for initializing and/or 

truing-up a BGCM. In this case, the DSM model is validated (and optionally recalibrated) at 

project start and at least once every 5 years.  

Use Case 2: DSM as a primary measurement approach 

In Use Case 2, DSM is used to directly quantify SOC stocks and stock changes. DSM model 

validation is required at the start of the project and at least once every 5 years. When 

verification is sought between model validation events, the DSM model must be recalibrated 

subject to sampling and other requirements described in Section 5.1.6.  

2.1.1 Validation-Driven Approach with Safeguards 

The tool requires both time-specific and project-specific model validation using representative 

in-situ soil samples. The model applied at the start of the verification period (t0) must be 

validated against in-situ samples collected at t0 in accordance with the requirements outlined 
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here. DSM model validation by an approved independent modeling expert (IME)2 is required by 

the time of the project’s first verification and at least once every five years thereafter  (Appendix 

1). Between these model validations, projects may undergo verification and issue credits under 

Use Case 2, but doing so requires the model to be recalibrated at each verification event. When 

credits have been issued in the absence of model validation, a cumulative carbon stock change 

adjustment ensures the accuracy of credits over the project’s lifetime by reconciling previously 
generated credits against validated measurements. A schematic description of this process is 

illustrated in Figure 1 and APPENDIX 2. This approach was designed to enable real-world use of 

the tool, including rolling enrollments, without compromising rigor. 

2.1.2 Model Validation Requirements 

To be considered valid, a DSM model must pass three tests. These tests are conducted at a 

specific point in time using independent in-situ soil samples collected through a representative 

sampling design of the project area. 

1) Coverage: at least 90% of validation observations must fall within 90% prediction 

intervals. 

2) Goodness of fit: R² > 0, indicating that the model provides a more precise estimate 

than the mean of validation data3 

3) Lack of bias: the model prediction error is not significantly different from 0 at the 0.05 

level under a two-tailed one-sample t-test.  

These tests are necessary and sufficient to demonstrate that the DSM model is accurate, 

precise, and unbiased across the project area and that its uncertainty is well-quantified. 

Repeating these tests through time demonstrates that the DSM model maintains these 

properties throughout the project's lifetime. 

2.1.3 Flexibility in Model Development 

The tool’s approach to validation and safeguards allows for flexibility. State-of-the-art 

environmental and remote sensing covariates are permitted by the tool along with any 

statistical or machine-learning procedure that has been demonstrated by a publication 

appearing in the Web of Science: Science Citation Index (SCI; available at 

https://mjl.clarivate.com). The tool’s approach to validation and safeguards requires 
representative sampling and is outcome-based, rather than prescriptive. This flexibility 

encourages innovation and adaptability to real-world conditions while upholding verifiable 

scientific integrity. 

2.1.4 Similarities to Existing Approaches 

Projects using the methods documented in this tool are procedurally similar to traditional soil 

sampling or BGCM methods already in use in the VCS Program. In particular: 

 
2 See Appendix 1 Assessment by Independent Modeling Expert (IME) 
3 See Janssen and Heuberger (1995) and Wadoux et al. (2022) for justification of the appropriateness of the R2 > 

0 threshold. 
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• in-situ soil measurements form the basis of calibration and validation. 

• uncertainty (including accounting for spatial covariance of model prediction errors) is 

quantified and accounted for using approaches similar to existing VCS methodologies. 

• periodic resampling and validation within project and baseline sites mirror measure-

remeasure approaches. 

• the use of a true-up and cumulative carbon stock change adjustments provides 

protections equivalent to those used for BGCM crediting under existing VCS 

methodologies. 

• rules for baseline control sites, uncertainty propagation, and how the uncertainty 

deduction is calculated are not changed by the tool – these guidelines follow the 

applied methodology in all cases. 

The procedures outlined in this tool draw from extensive peer-reviewed literature and establish 

a scientifically rigorous and flexible framework for employing DSM in ALM projects. By focusing 

on thorough validation, key safeguards, and verifiable best practices, the tool provides a 

roadmap for accurate SOC quantification at a single point in time and through time while 

allowing project proponents to leverage the efficiency and scalability of DSM approaches. 
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Figure 1. Example quantification life cycle for a project with rolling enrollment of new project 

areas (additional project lifecycle scenarios are provided in APPENDIX 2) 
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3 DEFINITIONS 

In addition to the definitions set out in the VCS Program Definitions, the following definitions 

apply to this tool.  

Biogeochemical process-based model (BGCM) 

A computational tool that applies biogeochemical principles to simulate soil processes, such as 

variations in soil organic carbon stocks. 

Calibrated model 

A workflow that uses digital soil mapping to produce an estimate of soil organic carbon stocks, 

along with associated uncertainty estimates for all prediction support units within a project 

area. 

Calibration 

The process by which a digital soil mapping model learns from data to minimize prediction 

error, and can be closed-form (e.g., least-squares) or iterative (e.g., machine learning and 

Bayesian methods). Calibration results in a set of parameters or settings that can be used to 

generate predictions from the model. 

Calibration and validation dataset 

A dataset that contains the target variable and covariates used to calibrate and validate the 

digital soil mapping model. The calibration and validation dataset may contain direct 

measurements of soil organic carbon stock and numerous corresponding environmental and 

remote sensing variables associated with each soil organic carbon stock measurement. 

Cluster 

A group within a staged sampling design that is chosen for sampling with a known, non-zero 

probability. Cluster sampling is employed when direct sampling of individual elements is 

challenging or impractical.  

Covariate 

Inputs to a model, used to predict the target variable during and after calibration. Covariates 

can be measured or modeled and may be generated using feature engineering. See APPENDIX 

3 for additional resources related to covariate selection. 

Coverage 

The percentage of independent measurements that are correctly predicted by a model. 

Coverage is assessed using a prediction interval by counting the number of validation 

observations within a given prediction interval. Nominal coverage occurs where the percentage 

of observations within the prediction interval matches the prediction interval-width (e.g., 90% of 

observations are within the 90% prediction interval at 90% coverage). 
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Cumulative carbon stock change adjustment 

A carbon crediting process that awards credit based on cumulative performance adjusted for 

systematic error (if any) at prior verification events. 

Digital soil mapping (DSM) 

The use of spatially explicit computer models to predict soil properties using gridded ancillary 

variables. 

Expected average project effect (EAPE)  

An estimate from at least one peer-reviewed journal article (or proprietary data where no peer-

reviewed journal articles are available) of the expected mean change in soil organic carbon 

(SOC) stocks in the next five years of the project, expressed in units of SOC stock. EAPE is used 

to guide sample size requirements for model validation.  

Feature engineering  

The process of selecting, transforming, manipulating, and combining raw data into the 

covariates used in a model. This includes developing new variables, such as biophysical or 

vegetation indices, conducting quality assessment and data screening (e.g., excluding or 

processing satellite images with cloud cover and snow), and standardizing data values over 

time to ensure consistency. Outputs from feature engineering can be measured, modeled, or 

both.  

Hyperparameter 

A configuration setting that dictates the behavior and learning process of a machine learning or 

statistical model. Examples include the depth of a decision tree, the learning rate in gradient 

descent methods, and sampling characteristics of a Markov chain Monte Carlo procedure. In 

the context of this tool, hyperparameters also include weights applied to different sets of 

calibration data during calibration.  

Hyperparameter tuning  

The process of choosing values for hyperparameters prior to model calibration. When 

hyperparameter tuning is performed by evaluating model performance, the data used for 

hyperparameter tuning must be independent of the calibration and validation sets.  

Independent modeling expert (IME)  

An individual or organization with demonstrated competence in digital soil mapping, especially 

with respect to soil organic carbon stocks and error propagation, and independence from the 

project proponent.  

Independent sample data 

Sample data that are not used for calibration procedures under a given instance of a model. 

Independent sample data are used for model validation.  
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Lowest-level sampling unit (LLSU)  

A stage within the project area that is homogeneous with respect to management practices. 

The LLSU must be sampled with simple random or stratified random sampling methods, in 

accordance with the requirements of the applied methodology.  

Missing at random 

Used to describe an incomplete dataset. Where data are missing at random, the probability that 

an observation is missing does not depend on the value of the missing observation. 

Model architecture 

Determines how the model processes input data and generates predictions. Examples include 

neural networks, gradient-boosted regression trees, and multiple regression. The components 

of model architecture include the number of layers or nodes in a neural network; activation 

functions; whether the model is linear or nonlinear, parametric or non-parametric, or 

frequentist or Bayesian; values for hyperparameters; and the loss function. 

Mapped area 

The area within which the digital soil mapping model is used to make predictions in the project 

area and/or baseline control sites.   

Model instance 

A calibrated version of a model generated during cross-validation, indexed in the tool using the 

subscript k. 

Model prediction error  

The difference between a model prediction and an independent measured value at a given 

location and prediction support unit. 

Model validation  

The process of evaluating a model's performance by comparing its predictions to measured 

values. In this tool, model validation requires passing three tests that address coverage, 

goodness of fit, and bias. Model validation ensures independence of calibration and validation 

data, achieved by using an independent validation set or cross-validation. Independence of 

calibration and validation data avoids overfitting, which occurs when a model learns specific 

details in calibration that fail to generalize, leading to poor performance under new conditions.  

Model validation report for digital soil mapping (DSM-MVR) 

A document describing calibration and validation procedures and outcomes for the digital soil 

mapping model used in the project (see APPENDIX 4). The DSM-MVR confirms that 

requirements related to coverage, goodness of fit, and bias have been met and includes the 

following components, i.e., the calibration and validation dataset, a description of all covariates 

and how they were generated, the architecture and components of the model. 

Multi-stage sampling design 

A hierarchical method used to generate a representative sample using a series of stages. The 

primary stage is the highest level in the hierarchy. Subsequent stages are smaller units within 
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larger stages in the hierarchy. For example, the primary stage could be a political or 

administrative boundary that contains smaller regions and fields. 

Prediction support unit 

The land area and volume of soil for which model predictions are calibrated and validated. The 

PSU refers to individual points or composite samples at specific depth intervals. For example, 

the PSU could be individual soil cores or composite samples from collections of soil cores over 

a specified depth range. Where the prediction support unit is the individual soil core, there 

must be a set of coordinates that define the collection location for the physical soil sample. 

Probability sampling 

Selecting samples from the population based on randomization. In a probability sample, every 

unit in the population has a known, non-zero probability of being included in the sample. This 

approach ensures that the sample is representative of the population, allowing for valid 

statistical inferences to be made. Probability sampling methods include simple random 

sampling, stratified sampling, systematic sampling, and cluster sampling, each of which 

maintains the principle of randomization. 

Standardized prediction error  

The prediction error at a given prediction support unit divided by the predictive standard 

deviation. 

Stratum  

A homogeneous subset of a quantification unit. Stratification in a sampling design involves 

dividing a larger unit into homogeneous segments, all of which are sampled. Strata are created 

to ensure that each subgroup within the population is adequately represented in the sample. 

For example, fields might be grouped into geographic clusters, some of which are selected for 

sampling. Where all fields within a selected cluster are sampled independently, these fields 

represent strata. Individual fields can also be stratified based on one or more variables. 

Stratification improves the precision of sampling by minimizing variability within each stratum. 

Target date  

The date of a given prediction from the calibrated model. For example, a calibrated model could 

generate a prediction of SOC stock in a specific prediction support unit for 1 July 2025. The 

initial target date (t0) for a prediction support unit, used in validation and prediction, is set 

based on the date of the first validation sampling campaign that includes that unit in the 

sampling design.  

Target variable  

The dependent variable being predicted or explained by a digital soil mapping model (e.g., soil 

organic carbon (SOC) as a percentage by mass, SOC stock, bulk density). 
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4 APPLICABILITY CONDITIONS 
This tool is applicable globally under the following conditions: 

1)  A calibration and validation dataset is used to calibrate and validate a model of SOC 

stock. 

1) The project activity is agricultural land management (e.g., an improved cropland 

management project type on agricultural land, grasslands, or rangelands). 

2) All calculations are auditable by a validation/verification body (VVB) and an 

independent modeling expert (IME).  

3) The mapped area contains less than 30% tree canopy cover. 

The tool is not applicable under the following conditions: 

4) The project area has permanent flooding. 

5 PROCEDURES 
This workflow is a systematic approach for calibrating and validating a DSM model and for 

estimating the uncertainty in predictions of SOC stocks and stock changes under the applied 

VCS methodology. Model validation occurs on every project using independent sample data. A 

graphical illustration of the workflow is provided in Figure 2. For simplicity, this process is 

described for a single time point, t, and a single DSM model that generates predictions of SOC 

stock. In practice, this process may be applied at multiple time points.  

The property being validated is always the prediction of SOC stock, even where separate 

components of SOC stock (SOC content and BD) are independently predicted. The variance of 

the estimate of the mean change in SOC stock over the duration of the project relative to 

baseline conditions is used to compute uncertainty and the associated uncertainty deduction 

under the applied methodology (see Sections 5.35.4 and 5.4).  

Multiple localized DSM models may be used for different subsets of the project area. Where 

multiple localized models are used, the model validation procedure must be conducted in 

aggregate across the outputs of the localized models for the entirety of the project area. In 

grouped projects, every time a project activity instance is added to the project, an updated 

model validation report for digital soil mapping (DSM-MVR) must be created to demonstrate 

that the DSM model is valid in the new project areas represented by the new project instances. 

All software, computer code, data and other dependencies must be documented, archived, 

version-controlled and available on request. 
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Estimates of SOC stock generated under the procedures outlined in this tool may be used in 

two ways:  

• Use Case 1: DSM is used to predict SOC stocks to initialize and/or true-up a BGCM 

(e.g., Quantification Approach 1 in VM0042). Where DSM is used to true-up a BGCM, 

the DSM model is used to quantify SOC stocks across the project area at the time of 

the BGCM true-up. The DSM is validated prior to or at verification using the procedures 

given here, and the BGCM is validated according to the requirements of the applied 

methodology. Uncertainty of the DSM predictions of SOC is propagated through the 

BGCM based on the requirements of the applied methodology. Where Monte Carlo 

error propagation is permitted, project proponents must use the procedure in 

APPENDIX 5.  

• Use Case 2: DSM is used to predict SOC stocks at a single point in time and changes in 

SOC stocks over time (e.g., Quantification Approach 2 in VM0042). The model requires 

validation at the start of the project and at least once every five years.4 Verification 

may occur between years 1 and 5 at the discretion of the project proponent, but model 

calibration or model validation is required at every verification event (Figure 1, 

APPENDIX 2). Recalibration requirements are described in Section 5.1.6.  

5.1 Model Development 

Use the steps below to develop the model, as illustrated in Figure 2.  

1) Assemble the calibration and validation data set (X) to be used for prediction at time t. 

Guidance on the collection of covariate and sample data are detailed in Sections 5.1.3 and 

5.2, respectively.  

2) Split X into K calibration and validation sets. The calibration set is used to estimate model 

parameters and the validation set is used to test model performance.  

a) Multiple procedures for identifying calibration and validation sets are applicable 

(e.g., completely independent validation set, leave one sample out, k-folds, 

geographically dependent cross-validation).  

b) Data from outside the project area may be used for calibration, but all data in the 

validation set must come from within the project area. 

c) Calibration and validation sets must remain independent (or where cross-validation 

is being used, conditionally independent). All parameter estimation, including 

hyperparameter tuning, where used, must not be exposed to observations in the 

validation set prior to validation. For multi-stage sampling designs, care must be 

 
4 Requiring calibration or validation at every verification event and requiring validation at least once every five 
years accommodates project proponents that prefer to fix model parameters after calibration and those who 

prefer to update the calibration over time. Regardless of the frequency of model calibration, all models used must 

pass the three validation tests described in Section 5.1 . 
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taken to account for data dependencies in the sampling design and avoid 

downward bias in model uncertainty estimation (see De Bruin et al., 2022)  

3) Using the calibration set, calibrate an instance (k) of the model. 

4) Generate predictions and estimate 90% prediction intervals for the predicted value of SOC 

stock for prediction support unit i at time t for every observation in the validation set. 

a) Prediction intervals for the validation points must be generated in a way that 

ensures independence of training and validation data.  

b) Any procedure that has been documented in at least one peer-reviewed publication 

in a journal indexed in the Web of Science: Science Citation Index may be used to 

estimate prediction intervals. Users must select one method and provide a 

justification for its use.  

5) Repeat steps 3–4 K times to generate a new model instance for each iteration k and 

assemble a performance dataset for validation. The performance dataset contains pairs of 

predicted and observed values of SOC stock and the associated 90% prediction interval for 

each prediction. 

a) The appropriate number of iterations K depends on Step 2(a). Where a completely 

independent validation set is used, K = 1. Where cross-validation is used, K is the 

number of folds in the cross-validation procedure.  

6) For every prediction support unit in the validation set, determine whether the prediction 

interval for SOC stock at time t contains the measured value. Where the validation sample 

falls within the prediction interval, the prediction passes. Otherwise, the prediction fails. 

a) Determine the percentage of validation observations that pass. The model must 

generate predictions that are within 90% prediction intervals at least 90% of the 

time, such that at least 90% of tests pass. If the model passes, proceed to step 7.  

b) Recalibration may require additional sampling, hyperparameter tuning, or other 

adjustments, but users must avoid fitting the model to the validation set after the 

properties of the validation set are known. Validation data must remain 

independent (or where cross-validation is used, conditionally independent). 

7) Compute the prediction error for all paired observations in the validation set according to 

the following equation: 𝜖𝑖,𝑡 = 𝑆𝑂�̂�𝑖,𝑡 − 𝑆𝑂𝐶𝑜𝑏𝑠,𝑖,𝑡 (1) 

 Where: 

ϵi,t = Model error in prediction support unit i at time t (Mg C/ha) 𝑆𝑂�̂�𝑖,𝑡 = Predicted SOC stock in prediction support unit i at time t (Mg C/ha) 

SOCobs,i,t = Observed SOC stock in prediction support unit i at time t (Mg C/ha) 
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8) Determine whether the mean model prediction error is significantly different from 0 using a 

one-sample t-test with α = 0.05. 

9) Using all paired observations in the test set, compute the amount of variance explained 

(R2) using: 

𝑅2 = 1 − ∑ 𝜖𝑖,𝑡2𝑛𝑖=1∑ (𝑆𝑂𝐶𝑜𝑏𝑠,𝑖,𝑡 − 𝑆𝑂𝐶̅̅ ̅̅ ̅̅ 𝑜𝑏𝑠,𝑡)2𝑛𝑖=1  
(2) 

 Where: 

R2 = Fraction of variance in SOC stocks that is explained by the model 

(dimensionless) 𝑆𝑂𝐶̅̅ ̅̅ ̅̅ 𝑜𝑏𝑠,𝑡  = Mean of observed values of SOC stock at time t (Mg C/ha) 

n = Number of prediction support units in the project area (unitless) 

The amount of variance explained (R2) must be greater than zero.5  

10) The model must pass all three of the following validation tests:  

a) Coverage is at least 90%.  

b) R2 is greater than 0.  

c) Model prediction error is not significantly different from 0 under a two-tailed, one-

sample t-test. 

For a model that passes these three validation tests, predictions should then be 

generated over the project area within every prediction support unit and aggregated to 

determine the arithmetic mean SOC stock at time t using the following equation: 

𝑆𝑂�̂�𝑡 = 1∑ 𝐴𝑖𝑛𝑖=1 ⋅ ∑ 𝑆𝑂�̂�𝑖,𝑡𝑛
𝑖=1 ⋅ 𝐴𝑖 (3) 

 Where: 𝑆𝑂�̂�𝑡 = Mean of predicted SOC stock values at time t (Mg C/ha) 

Ai = Area of prediction support unit i within the project area6 (ha) 

When new project activity instances are added to the project in different years, the time 

(t) of initial stock measurement will not be equivalent. The target date for the map of 

initial stock values is defined for each prediction support unit using the first year in 

which the unit is included in the sampling design (see APPENDIX 2). 

 
5 R2 > 0 indicates that the model provides a more precise estimate than the mean of validation data. See 

Janssen and Heuberger (1995) and Wadoux et al. (2022) for further justification. 
6 Accounts for the possibility that prediction support units may be of different size. 
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11) Estimate the variance of the mean SOC stock at time t using any valid procedure that 

explicitly accounts for the covariance of model prediction errors between prediction support 

units (see Section 5.3 and  APPENDIX 6). Further guidance on valid procedures to account 

for covariance of model prediction errors is provided in APPENDIX 7.  

12) Repeat Steps 1–11 at every model validation event.7 The mean stock change between 

times t and t + Δt is calculated using the following equation: ∆𝑆𝑂�̂�𝑡, Δ𝑡 = 𝑆𝑂�̂�𝑡,∆𝑡 − 𝑆𝑂�̂�𝑡 (4) 

 Where: ∆𝑆𝑂�̂�𝑡, Δ𝑡 = Mean predicted SOC stock change over all prediction support units 

between time t and time t + Δt (Mg C/ha) 𝑆𝑂�̂�𝑡,∆𝑡 
= Mean of model predictions of SOC stock over all prediction support 

units at time t + Δt (Mg C/ha) 𝑆𝑂�̂�𝑡 = Mean of model predictions of SOC stock over all prediction 

support units at time t (Mg C/ha) 

Mean predicted SOC stock change in the project area between time t and time t + Δt 

(∆𝑆𝑂�̂�𝑡, Δ𝑡) is greater than zero when SOC stock increases between t and t + Δt, and ≤0 
otherwise.  

The variance of the mean stock change is calculated from the sample variances and 

standard deviations using the following equation: 

𝑣𝑎𝑟 (∆𝑆𝑂�̂�𝑡, Δ𝑡) = 𝑣𝑎𝑟 (𝑆𝑂�̂�𝑡+∆𝑡) + 𝑣𝑎𝑟 (𝑆𝑂�̂�𝑡 ) − 2𝜌 ⋅ √𝑣𝑎𝑟 (𝑆𝑂�̂�𝑡+∆𝑡) ⋅ √𝑣𝑎𝑟 (𝑆𝑂�̂�𝑡 ) (5) 

  Where: 𝑣𝑎𝑟 (∆𝑆𝑂�̂�𝑡, Δ𝑡) = Variance of the mean of predicted SOC stock change across 

the project area between times t and t + Δt (Mg C/ha)2 𝑣𝑎𝑟 (𝑆𝑂�̂�𝑡+∆𝑡) 
= Variance of the mean of predicted SOC stock at time t + Δt 

(Mg C/ha)2 𝑣𝑎𝑟 (𝑆𝑂�̂�𝑡 ) = Variance of the mean of predicted SOC stock at time t 

(Mg C/ha)2 

ρ = Correlation between the standard deviations of SOC stock at 

times t and t + Δt 

Each of the var terms is derived using the procedure from Step 11. The term 2𝜌 ⋅√𝑣𝑎𝑟 (𝑆𝑂�̂�𝑡+∆𝑡) ⋅ √𝑣𝑎𝑟 (𝑆𝑂�̂�𝑡 ) is the covariance of the error terms over time.  

 
7 For example, model validation is required every time when a new project instance is added to a project area. 
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The variance of the estimate of the mean SOC stock can be used to propagate 

uncertainty through BGCM simulations using the Monte Carlo method (see APPENDIX 

5), as described in VM0042.  

13) The mean carbon dioxide removal estimate in soil is calculated using the following 

equation: 𝐶𝑂2𝑠𝑜𝑖𝑙, 𝑡, Δ𝑡  =   (∆𝑆𝑂�̂�𝑡, Δ𝑡  −  ∆𝑆𝑂�̂�𝑏𝑠𝑙, 𝑡, Δ𝑡) × 4412   (6) 

 Where:  

CO2soil,t,Δt = Mean estimate of carbon dioxide removal in SOC stocks between 

times t and t + Δt (Mg C/ha) ∆𝑆𝑂�̂�𝑏𝑠𝑙, 𝑡, Δ𝑡 = Mean predicted SOC stock change in the baseline control area 

between time t and time t + Δt; equal to zero where baseline 

control sites are not used (Mg C/ha) 

44/12 = Ratio of molecular weight of carbon dioxide to carbon 

The variance of the mean emissions removal estimate in soil is calculated using the 

following equation:  

𝑣𝑎𝑟(𝐶𝑂2𝑠𝑜𝑖𝑙,𝑡, Δ𝑡) = (𝑣𝑎𝑟 (∆𝑆𝑂�̂�𝑡, Δ𝑡)   +  𝑣𝑎𝑟 (Δ𝑆𝑂�̂�𝑏𝑠𝑙, 𝑡, Δ𝑡)) × (4412)2
 (7) 

Where: 

var(CO2soil,t,Δt) = Variance of mean soil removals estimate (Mg C/ha)2 𝑣𝑎𝑟 (Δ𝑆𝑂�̂�𝑏𝑠𝑙, 𝑡, Δ𝑡) = Variance of mean predicted SOC stock change across the 

baseline control sites between times t and t + Δt 

(Mg C/ha)2 

Where the applied methodology requires baseline control sites, Δ𝑆𝑂�̂�𝑏𝑠𝑙, 𝑡, Δ𝑡 and its 

variance are calculated using Steps 11–12 on the baseline control sites rather than the 

project area.  

The variance of the estimate of the mean removals is used to compute the uncertainty 

deduction in compliance with the applied methodology.8 

 

For a detailed life cycle outline over the course of a project under Use Case 2, see Figure 1 and 

APPENDIX 2. The initial (t0) model validation and associated DSM-MVR is reviewed by an IME at 

 
8 For example, the probability of exceedance can be calculated directly from the variance of the estimate of mean 

removals and can be used with Equation (74) in VM0042, v2.1, or equivalent equation in the most recent version 

of VM0042. 
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project validation or at the first verification. Re-validations occur at least once every 5 years 

thereafter.  

The model validation procedure described in this section must follow the sampling design of 

the project and any sampling requirements (e.g., for baseline control sites or permanent 

sampling stations) specified by the applied methodology. Where baseline control areas are 

required by the applied methodology, model validation must be conducted separately on the 

project and baseline control sites at the second and all subsequent model validation events.9  

 
9 Project and baseline scenarios are expected to be similar at the start of the project (first model validation), but 

after project activities commence, agricultural management practices will diverge. Therefore, each subsequent 

model validation and true-up must treat project and baseline control areas separately. 
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Figure 2. Model calibration, validation, and uncertainty estimation flow 

 

5.1.1 Definition of the Mapped Area 

The mapped area is the portion of the project area within which DSM estimates of SOC stock 

and stock changes are generated. This area may encompass the entire project area or a subset 

(e.g., if other quantification methods are applied to some locations within the project area). All 

prediction support units within the mapped area must be completely contained within the 

project boundary and free of extraneous features. For example, pixels on edges, such as field 

boundaries, are not contained within the mapped area. Pixels that partially or completely 
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contain buildings, trees, waterways, or roads must be excluded from the mapped area. These 

exclusions do not change the project area. For example, a project area might be 10,000 

hectares. After excluding edge pixels, roads, trees, buildings, and waterways, the summed area 

of all prediction support units in the mapped area might be 9950 hectares. The mean SOC 

stock density within the summation of all prediction support units is assumed to represent the 

10,000 hectare project.  

5.1.2 Model Architecture 

Project proponents may use any statistical or machine-learning procedure to predict SOC 

stocks, including but not limited to traditional regression, ensemble-based regression trees, 

neural networks, and other methods in machine learning. Frequentist, Bayesian, parametric, 

and non-parametric methods are permitted. The selected model architecture may include one 

or more components. Examples of multicomponent models include but are not limited to: 

• separately generating estimates of SOC as a percentage by mass and BD and 

combining these predictions to arrive at an estimate of SOC stock on an ESM basis. 

• averaging the outputs of different procedures to arrive at a weighted mean estimate. 

• using one method to give a mean point-prediction and another to quantify its 

uncertainty. 

• using localized versions of the model with differing calibration weights to generate 

predictions for different prediction support units. 

• using one method to generate predictions of SOC stock, then using the predicted value 

of SOC stock as a single predictor in a simple linear regression.  

The selected model architecture must be described in at least one peer-reviewed journal article 

in any field and justified by the user in the DSM-MVR (APPENDIX 3). The DSM-MVR must 

describe each component and the relationships between them and must demonstrate that the 

model passes the validation tests in Section 5.1(10) (APPENDIX 4). 

5.1.3 Covariate Selection / Feature Engineering 

Peer-reviewed studies demonstrate that numerous covariates can predict SOC content, BD, and 

SOC stock in soils. Since more covariates are likely to emerge as appropriate predictors in the 

future, there is no fixed positive list of acceptable covariates, and no restrictions on their types. 

However, users must ensure that covariates are generated in accordance with the 

recommendations in Sections 5.1.3.1–5.1.3.3. A comprehensive set of peer-reviewed 

publications describing a wide range of covariate features for predicting SOC content, BD, or 

SOC stocks, including the appropriate steps to generate them and ensure their accuracy, is 

provided in APPENDIX 3.  

A complete list of covariates, their data sources, and procedures used for data processing and 

feature engineering must be provided in the DSM-MVR. Examples of covariate raster data used 



 CN0137, Draft Tool 

22 

for prediction must be made available as supplements to the DSM-MVR for VVB and/or IME 

review upon request. 

5.1.3.1 Quality Control for Covariates Derived from Remote Sensing 

Covariates from remote sensing must be processed carefully to remove features unrelated to 

ecosystem dynamics (e.g., cloud cover, shadows, snow, roads, trees, and waterways). The same 

covariate processing procedures must be used consistently during calibration, validation, and 

prediction.10 Where optical remote sensing data depend on physical interpretations of 

reflectance, data must undergo atmospheric correction before further processing.  

5.1.3.2 Time-invariant Covariates 

Time-invariant (or static) covariates are those for which the data source serves as a fixed 

representation of these properties over the project crediting period (e.g., digital elevation 

models, long-term climate normals, and prior soil property and class maps).  

5.1.3.3 Time-varying Covariates 

Time-varying covariates depend on the target date of model calibration and prediction (e.g., 

summaries from optical remote sensing, such as remote sensing indices indicative of 

vegetation or soil characteristics, weather measurements, including temperature, precipitation, 

vapor pressure and humidity, and farm-practice data, such as cover cropping, reduced tillage, 

and other changes to land management practices). These covariates must maintain the same 

time interval and temporal relationship with respect to the target prediction date during 

calibration and prediction phases. If the model was calibrated using data from a specific period 

(e.g., days, weeks, or months) leading up to the target date, the same time structure and 

methodology must be applied when making predictions. For example, if a covariate represents 

the three-year mean surface temperature prior to the prediction date, users cannot change this 

to a two-year mean during prediction unless the model is recalibrated with the new temporal 

relationship.11  

5.1.4 Calibration Data 

The target variable is typically SOC content, BD, or SOC stock measured using individual soil 

cores or composite samples, but the tool permits use of augmented or synthetic calibration 

data12 provided that all validation data follow the guidance in Section 5.2. Calibration samples 

may be collected within or outside the project area subject to the following constraints: 

1) Samples may be collected prior to the start date of the project. All samples must be matched 

with covariate features that coincide in space and time with the location and sample date. 

Samples used for validation must be from exclusively within the project area. 

 
10 For instance, if a cloud masking method is applied, it must be used consistently whenever the covariate is used.  
11 Maintaining this consistency ensures the model correctly applies the patterns learned during calibration to new 
predictions. 
12 For instance, Xie et al. (2022) showed that creating synthetic calibration data using predictions from a BGCM 

can improve the temporal stability of DSM predictions. 
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2) There must be a known month and year in which the sample was collected.  

3) Where the prediction support unit is the individual soil core, there must be a set of coordinates 

that define the collection location for the physical soil sample. These coordinates define the 

location of the individual sample, not the site or general location where the sample was 

acquired. Where the prediction support unit is an area, such as a smallholder farm, the 

coordinates define the area centroid. 

4) All individual or composite samples must have an associated soil depth or depth range. 

Samples from any soil depth or depth range may be used during calibration, but only those 

samples at the specific soil depth or depth ranges identified by the applied methodology are 

used for validation. Accounting for gravel particles in the estimate of BD must follow guidance 

in the applied methodology.  

5) Samples collected as soil cores may be depth-aligned13 to target depths using a method 

described in at least one peer-reviewed publication appearing in the Web of Science: Science 

Citation Index (e.g., mass-preserving splines or linear interpolation; Bishop et al. 1999).  

5.1.5 Treatment of Depth in the Model 

The use of a surface-to-subsurface relationship from ancillary depth-profile data is not 

permitted. The calibrated model must treat soil depth in one of two ways:  

1) The calibrated model may treat soil depth as a continuous covariate feature to predict 

subsurface SOC content, BD, or SOC stock (e.g., Fu et al. 2024; Ma et al. 2021; Sanderman et 

al. 2018). 

2) Alternatively, a project proponent may choose to use independent models to generate 

predictions at specific soil depths or depth ranges. For example, a project proponent could 

choose to develop one calibrated model that predicts SOC or BD over the 0–5 cm depth range, 

and another calibrated model that predicts these properties over the 5–30 cm depth range. 

The project proponent could then combine model outputs to represent SOC and BD over the 0–
30 cm depth range. Where separate models are used, prediction uncertainty from each model 

must be propagated through all calculations of SOC stock.  

5.1.6 Quantification and Calibration at Intermediate Verification Events 

Under Use Case 2, the DSM model must be recalibrated14 (see Section 5.2.3 for sampling 

requirements for recalibration) when project proponents pursue verification between model 

 
13 Depth alignment is the process of standardizing soil core measurements to the same depths or depth 
increments. 
14 Recalibration reduces dependency on cumulative carbon stock change for correcting systematic errors, if any. 

Consider a project that sequesters 0.2 t C/ha/year above the baseline scenario. After five years, the potentially 

creditable quantity (ignoring uncertainty) is 1 t C/ha. Imagine that credits are issued in year 3 using a biased 

model that predicted only 0.4 t C/ha by year 3, which is 0.2 t C/ha less than the true value of 0.6. At year 5, when 
model validation and cumulative adjustments occur, the model correctly predicts 1 t C/ha, but the issuance at 

year 5 is 0.6 t to make up for the underestimation in year 3 (i.e., 0.4 t C/ha was issued in year 3 and an additional 

0.6 t C/ha was issued in year 5). Recalibration at verification events between model validation events will reduce 
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validation and true-up. Model performance metrics (coverage, R2, and bias) for the recalibration 

must be reported in an amendment to the initial DSM-MVR, but the DSM-MVR is not reviewed 

by the VVB until model validation. The project-specific recalibration data must pass the model 

validation tests of coverage and R2 (see Section 5.1(10)). The model validation bias test is not 

required between model validation events. For detailed illustrations of various scenarios, see 

APPENDIX 2. 

5.2 Soil Sampling 

Soil samples must be collected in the project area for validation. Best practices for the 

collection and analysis of soil samples for VCS projects are described in applicable VCS 

methodologies, including Section 9 of VM0042. Collection of soil samples must follow 

procedures outlined in the applied methodology, subject to the following constraints:  

1) Soil samples collected to any depth or depth range may be used for model calibration, but 

validation samples must match the depth or depth range in the applied methodology. 

2) Soil samples collected prior to the project start date may be used for model calibration, but 

validation samples must be collected within six weeks15 of the target date used for validation. 

3) Soil samples collected outside the project area may be used for model calibration, including 

samples from publicly available sample archives, such as those generated under national or 

international soil inventories, but validation samples must be collected exclusively within the 

project boundary.  

4) Composite samples may be used (e.g., for smallholder farms or replicate samples within a 

single prediction support unit). Where composite samples are acquired, the prediction support 

unit is the area within which the composite sample was acquired and the number of samples in 

the composite (e.g., a 1 ha field with 5 cores, or a single 10 × 10 meter pixel with 3 cores). The 

prediction support unit represented by a target variable must be equivalent among all 

calibration, validation, and prediction observations. 

5.2.1 Sampling Design 

Validation data must be drawn from a representative probability sample within the project area, 

but there are no spatial sampling design requirements for calibration data. Where a 

representative sample is unavailable but other data exist, the project proponent must justify 

treating unsampled units as “missing at random” in the DSM-MVR. The validation data must 

represent the spatial distribution of the project area, with the justification provided in the DSM-

MVR.16 Sampling procedures must comply with the target ALM methodology. The most effective 

 
the potential for swings in creditable carbon disconnected from real changes. These recalibration events provide 

safeguards against over and under-crediting. 
15 This is consistent with general requirements for soil sampling in VM0042, which states that sampling must be 

conducted during the same season. For example, if the target date is 6 June, validation samples must be 
collected within the 25 April–18 July interval. 
16 The justification in the DSM-MVR should explain the sampling process used to generate the validation data, and 

why that process will generate representative sample. 



 CN0137, Draft Tool 

25 

methods for achieving a representative sample with sufficient density will depend on factors 

such as the project's geographic scope, environmental domains, and model performance. 

1) Where new project instances are enrolled across multiple years in a grouped project design, the 

year in which a prediction support unit was included in the sampling design must be the top-

level stratum. This requirement indicates that rolling enrollments cannot be added to existing 

strata.   

2) Where the method selected to account for spatial covariance in the variance of mean SOC 

stock requires a variogram, the project proponent must ensure that a variety of inter-point 

distances in the 0–500 m range are adequately represented among the sample locations. 

Where this is not achieved by the initial probability sample, additional locations should be 

selected (see guidance for the use of geostatistical methods in Section 5.5).  

3) The number of strata is at the discretion of the project proponent but may be defined using 

estimates of SOC stock, covariates, potential or realized SOC stock change, or ancillary 

variables not included in the model. 

4) Each prediction support unit must belong to only one stratum. 

5) Under Use Case 2, where baseline control sites are required by the applied methodology they 

must be sampled according to the requirements of the applied methodology. 

6) The sample size required for model validation depends on the model prediction error and the 

expected average project effect (EAPE). Project proponents may use the sample size formula for 

a one-sample t-test to estimate the approximate sample size: 

𝑛𝑡 = ((𝑡β   + 𝑡𝛼2 ) ×  𝜎𝐸𝐴𝑃𝐸 )2
 (8) 

Where:  

nt  = Estimated sample size required to conduct the bias test 

(unitless) 

tβ = Critical value of the t distribution for the desired type II error 

probability, β = 0.8 

tα/2 = Critical value of the t distribution for type I error probability, 

α = 0.05 

σ = Standard deviation of the model prediction error 

EAPE = Expected average project effect, an estimate of the 

expected mean change in SOC stocks in the first five years 

after project initiation; should be obtained from at least one 

peer-reviewed journal article or proprietary data where no 

peer-reviewed journal articles are available 
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Beyond these rules, project proponents have wide flexibility to tailor the sampling design to the 

conditions of the project, provided the sampling design is compliant with the applied 

methodology. For example, a rangeland project might constitute a contiguous area on a single 

soil type with little to no variation in temperature or precipitation. In this scenario, it might be 

appropriate to use a single level stratified random sample based on environmental covariates 

within the project area. Where a project area is very large or contains strong gradients in 

environmental variables or ALM conditions, stratified random sampling applied to the whole 

area is likely to be inefficient. A variety of methods to improve sampling efficiency are available, 

including those described in Cochran (1977) and Som (1995), such as multi-stage or 

hierarchical sampling.  

5.2.2 Sampling Requirements under Use Case 1 

All sampling and validation requirements for initial SOC stocks described above apply under 

Use Case 1. DSM can be used to initialize a BGCM, as outlined in Quantification Approach 1 in 

VM0042. The BGCM must be validated according to the applied methodology. Validation of the 

DSM estimate of SOC stocks follows the procedures specified in Section 5.1. The target date for 

initialization must be within six weeks of the date represented by the stock measurements, 

which is determined by the sampling campaign associated with enrollment for each prediction 

support unit.17 Since estimates of changes in greenhouse gases (GHGs) under this approach 

depend on the BGCM, there are no additional sampling requirements beyond those necessary 

to validate the SOC stock estimate at the specified time, as well as any other sampling 

requirements under the applied methodology.  

5.2.3 Sampling Requirements under Use Case 2 

The model must be validated, by the first project verification and at least once every five years, 

against observations of SOC stock prior to implementation of project activities (Figure 1, 

APPENDIX 2). Issuance of verified carbon units (VCUs) may occur more frequently, but model 

calibration or model validation is required at every verification event, subject to the following 

constraints:  

1) There are no spatial sampling design requirements for model calibration.18   

2) The number of samples used to recalibrate the model must be sufficient to update the 

calibration for the current target date; at least 10% of the number of samples used in 

the previous model validation must be used for recalibration. 

3) Model validation locations should be the same as the locations used at the prior model 

validation (i.e., the same prediction support units and the same locations within those 

 
17 The six-week time window is consistent with VM0042, which states that sampling and re-sampling 

campaigns must be conducted during the same season over time.  
 
18 This is because the tool evaluates model performance on an outcome basis (model validation) by comparing 

model predictions to independent measured values within the mapped area. 
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prediction support units) to minimize the impact of the spatial component of sampling 

error on model validation. 

4) Where the project proponent does not resample all previous validation locations, the 

subset selected from the original locations for resampling must be identified at 

random.  

5.3 Computing the Variance of the Average SOC Stock 

Errors in DSM predictions are linked to unseen factors. Where map errors are spatially 

structured, estimates of the variability in mean estimates such as the standard error will 

significantly underestimate the precision of the mean. Geostatistical methods address this 

issue by quantifying and accounting for spatial dependence in the errors.  

The contribution of spatial correlation in the variance  of the SOC stock  must be addressed. 

Project proponents may implement the methods described by Wadoux and Heuvelink (2023) 

using the steps below (see also APPENDIX 6 and APPENDIX 7), which uses a Monte Carlo 

approximation to estimate the variance of the prediction error of the spatial average, or any 

valid method described in APPENDIX 7 that accounts for spatial covariance. 

1) Compute the standardized prediction error at every validation prediction support unit 

using the following equation: 𝜀𝑖,𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 = ε𝑖σ𝑖 (9) 

Where: εi,standardized  = Standardized prediction error for prediction support unit i εi  = Prediction error for prediction support unit i 

σi   = Predictive standard deviation of the model for prediction 

support unit i; must be generated by the same process used 

to evaluate the coverage test described in Section 5.1 

2) Compute the spatial correlation function by fitting a variogram to the standardized 

prediction errors and transforming the variogram’s predictions into a correlation 
function. Section 5.5 provides guidance on fitting variograms. 

𝜌(ℎ) = 𝑠𝑖𝑙𝑙 − 𝛾(ℎ)𝑠𝑖𝑙𝑙  
(10) 

Where: 

ρ(h) = Correlation function of the standardized model prediction error 

at lag distance h 

γ(h) = Semivariance for a pair of points separated by lag distance h 

sill = Value of the semivariance at the range in the dataset 
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3) For each Monte Carlo draw, randomly select a pair of prediction locations s and u, and 

compute the covariance between them using the following equation: 𝑐𝑜𝑣(𝜎𝑠, 𝜎𝑢) = 𝜎𝑠 × 𝜎𝑢 × 𝜌(|𝑠 − 𝑢|) (11) 

Where: 

σs = Predictive standard deviation of the model at location s 

σu = Predictive standard deviation of the model at location u 

ρ(|s − u|) = Correlation of model prediction error at the lag distance 

separating points s and u 

4) Compute the variance of the mean SOC stock using the following equation: 

𝑣𝑎𝑟 (𝑆𝑂𝐶�̂�̅̅ ̅̅ ̅̅ ̅) = 1𝐿 ∑ 𝜎𝑠,𝑙 ⋅ 𝜎𝑢,𝑙 ⋅ 𝜌(|𝑠𝑙 , 𝑢𝑙|)𝐿
𝑙=1  

(12) 

1) Where: 𝑣𝑎𝑟 (𝑆𝑂𝐶�̂�̅̅ ̅̅ ̅̅ ̅) = Variance of the prediction error of the spatial average 

σs,l  = Predictive standard deviation of the model at location s selected 

in sample l 

σu,l  = Predictive standard deviation of the model at location u selected 

in sample l 

ρ(|sl,ul|)  = Correlation of the model prediction errors at the lag distances 

separating points s and u in sample l 

L = 1, 2, …, L Monte Carlo samples 

5) Confirm that the Monte Carlo simulation generated a precise estimate of the variance. 

The precision of the variance will increase with the number of Monte Carlo samples, L. 

Project proponents must demonstrate that the variance of the mean GHG emission 

removal estimate in soil has been calculated with sufficient precision such that 

imprecision in estimates of the terms in Equation (5) impacts the uncertainty deduction 

by less than ±1 percentage point. This can be achieved by repeating the Monte Carlo 

process a large number of times and showing that the uncertainty deduction is 

fluctuating less than ±1 percentage point (see APPENDIX 6). 

5.4 Computing the Variance of the Change in SOC Stock 

The variance of the mean stock change estimate is calculated using Equation (5). This 

calculation accounts for the covariance term explicitly using an estimate of ρ. This parameter 

can be estimated in one of two ways. 
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1) Where measurements of the standardized prediction error are available at the same 

model validation locations at more than one time (i.e. there are repeated validation 

measurements at the same locations), use the following cross variogram procedure:19 

𝛾01(ℎ) = 12 𝐸[(𝜀0(𝑠 + ℎ) − 𝜀0(𝑠)) ∙ (𝜀1(𝑠 + ℎ) − 𝜀1(𝑠))] (13) 

Where: 

γ01(h) = Semivariance for the erros, ε0 and ε1, separated by distance h 

ε0 = Model prediction error at time 0 

ε1 = Model prediction error at time 1 

2) Where measurements of the standardized prediction error are available at more than 

one time, but not at the same validation locations, use the following pseudo cross 

variogram procedure:20 𝜋0,1(ℎ) = 12 𝐸 [(𝜀0(s + h) − 𝜀1(𝑠))2] (14) 

Where: 

π0,1(h) = Semivariance obtained with the pseudo cross variogram for in 

the errors ε0 and ε1, separated by distance h 

ε0(s + h) = Model prediction error at location s at time 0 

ε1(s) = Model prediction error at location s at time 1 

After the cross variogram or pseudo cross variogram is estimated, 𝜌 can be obtained using 

Equation (10).  

5.5 Guidance on Variogram Selection and Fitting 

Project proponents must compare multiple variogram functions to ensure that the variogram 

has been correctly estimated (e.g., spherical, Gaussian, and nugget-effect). Publicly available 

software is available to fit variograms. Project proponents must describe the software and 

version used in the DSM-MVR. A candidate variogram model should be selected using visual 

interpretation of the fitted variogram and may include model selection criteria (e.g., Akaike’s 
information criterion, Bayesian information criterion).  

The DSM-MVR must include a plot of the selected variogram and several candidate 

alternatives, and must include numerical values of model selection criteria, where used. Nested 

variogram models are permitted, where different functions are used to estimate the spatial 

autocorrelation of standardized prediction errors at different lag distances. Nested variograms 

 
19 Adapted from Equation 20.10 in Wackernagel (2003, p. 147) 
20 Adapted from Equation 20.18 in Wackernagel (2003, p. 149) 



 CN0137, Draft Tool 

30 

may be geographically stratified, such that short-distance lags are handled differently in 

different parts of the project area.  

5.5.1 Sampling Guidelines for Variogram Calculations 

Sampling guidelines must ensure that distances in the 0–500 m range are adequately 

represented. Webster and Oliver (1992) and Kerry and Oliver (2007) provide guidance on 

sample sizes and the spatial proximity of samples that must be followed. At least 100 points 

are needed for variogram estimation, but more points will generally improve the robustness of 

the variogram.  

Fitting a variogram involves calculating a distance matrix containing the distances between all 

pairs of points. The variogram is then fitted to these distances within specific bins, such as 0–
10 m, 10–20 m, and so on. A key consideration is determining the number of bins and the 

width of each bin. This can be approached in various ways, including using bins with an even 

number of pairs, bins of uniform width, or bins that minimize variation in distance. 

If bin intervals are too small, semivariance estimates will be based on few point pairs, leading 

to imprecise estimates of the variogram. Conversely, if bin intervals are too wide, the reduced 

number of intervals may limit the ability to accurately estimate the range of spatial correlation. 

Use the following principles to guide the selection of appropriate bin numbers and widths: 

1) Each bin should contain at least 50 pairs of locations (Schabenberger and Gotway 

2017). 

2) The distance represented by the center of the first bin must be smaller than the 

estimated range of the variogram. 

3) The distance represented by the center of the last bin should be half the maximum 

distance among all possible locations (Cressie 1985). 

For additional guidance related to bin width and number, see Section 3.2.3 in Oliver and 

Webster (2015). 

6 DATA AND PARAMETERS 

6.1 Data and Parameters Available at Validation 

 

Data/Parameter 𝑆𝑂�̂�𝑖,𝑡 

Data unit Mg C/ha 

Description Predicted SOC stock in prediction support unit i at time t 
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Equations (1), (3) 

Source of data Calibrated DSM model 

Value applied N/A 

Justification of choice of 
data or description of 

measurement methods 
and procedures applied 

This is the predicted value from the calibrated DSM model applied to 

covariates at prediction support unit i at time t. 

Purpose of data Calculation of project emissions 

Comments N/A 

 

Data/Parameter Ai 

Data unit Area (e.g., hectares or acres) 

Description Area of prediction support unit i within the project area 

Equations (3) 

Source of data Prediction support unit i 

Value applied N/A 

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

The area of each prediction support unit is used to account for the 

possibility that not all prediction support units have the same area. 

Purpose of data Calculation of project emissions 

Comments N/A 
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Data/Parameter 𝑆𝑂�̂�𝑡 

Data unit Mg C/ha 

Description 
Mean of model predictions of SOC stock over all prediction support 

units at time t 

Equations (4) 

Source of data Calibrated DSM model 

Value applied N/A 

Justification of choice of 
data or description of 
measurement methods 

and procedures applied 

This is the predicted mean value from the calibrated DSM model 

applied to covariates at time t. 

Purpose of data Calculation of project emissions 

Comments N/A 

 

Data/Parameter 𝑆𝑂�̂�𝑡,∆𝑡 

Data unit Mg C/ha 

Description 
Mean of model predictions of SOC stock over all prediction support 

units at time t + Δt  

Equations (4), (6) 

Source of data Calibrated DSM model 

Value applied N/A 
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Justification of choice of 
data or description of 
measurement methods 

and procedures applied 

This is the predicted mean value from the calibrated DSM model 

applied to covariates at time t + Δt. 

Purpose of data Estimation of SOC stock and changes over time 

Comments N/A 

 

Data/Parameter  Δ𝑆𝑂�̂�𝑏𝑠𝑙, 𝑡, Δ𝑡 

Data unit Mg C/ha 

Description 
Mean predicted SOC stock change in the baseline control area between 

time t and time t + Δt 

Equations (6) 

Source of data Calibrated DSM model 

Value applied N/A 

Justification of choice of 
data or description of 
measurement methods 

and procedures applied 

This is the mean emissions removal estimate in the baseline control 

area time t and time t + Δt. 

Purpose of data Calculation of project emissions  

Comments Equal to zero where baseline control sites are not used. 

 

Data/Parameter 𝐶𝑂2𝑠𝑜𝑖𝑙, 𝑡, Δ𝑡 

Data unit CO2e 

Description The mean emissions removal estimate for soil. 



 CN0137, Draft Tool 

34 

Equations (6) 

Source of data Calibrated DSM model 

Value applied N/A 

Justification of choice of 
data or description of 

measurement methods 
and procedures applied 

This is the mean emissions removal estimate in soil in units of CO2e. It 

is the change in CO2e in the project area between time t and t + Δt 
minus the corresponding change in the baseline control area. 

Purpose of data Calculation of project emissions  

Comments N/A 

 

Data/Parameter EAPE 

Data unit Mg C/ha 

Description Estimated average project effect 

Equations (8) 

Source of data Peer-reviewed literature or proprietary data 

Value applied Where no estimate is available, a value of 1.5 may be used. 

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

An estimate from at least one peer-reviewed journal article (or 

proprietary data where no peer-reviewed journal articles are available) 

of the mean change in SOC stocks in the first five years after project 

initiation 

Purpose of data Guidance on sample size for DSM model validation 

Comments 
DSM model validation must occur by the first project verification and at 

least once every five years.  
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Data/Parameter 𝜎𝑠 

Data unit unitless 

Description Predictive standard deviation of the model at location s 

Equations (11) 

Source of data Any valid method to compute the predictive standard deviation 

Value applied N/A 

Justification of choice of 

data or description of 
measurement methods 
and procedures applied 

The predictive standard deviation is used in combination with the 

spatial covariance of the standardized prediction error to estimate the 

variance of the mean using geostatistical methods. 

Purpose of data Calculation of project emissions  

Comments N/A 

 

Data/Parameter 𝜎𝑢 

Data unit unitless 

Description Predictive standard deviation of the model at location s 

Equations (11) 

Source of data Any valid method to compute the predictive standard deviation 

Value applied N/A 
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Justification of choice of 
data or description of 
measurement methods 

and procedures applied 

The predictive standard deviation is used in combination with the 

spatial covariance of the standardized prediction error to estimate the 

variance of the mean using geostatistical methods. 

Purpose of data Calculation of project emissions  

Comments N/A 

6.2 Data and Parameters Monitored 

Data/Parameter 𝑆𝑂�̂�𝑖,𝑡 

Data unit Mg C/ha 

Description Predicted SOC stock in prediction support unit i at time t 

Equations (1), (2) 

Source of data Calibrated DSM model 

Value applied N/A 

Justification of choice of 
data or description of 
measurement methods 

and procedures applied 

This is the predicted value from the calibrated DSM model applied to 

covariates at prediction support unit i at time t. 

Purpose of data Calculation of project emissions 

Comments NA 

  

Data/Parameter SOCobs,i,t 

Data unit Mg C/ha 

Description Observed SOC stock in prediction support unit i at time t 

Equations (1), (2) 
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Source of data 
Measurement of SOC content and BD from a soil core or composite 

sample 

Value applied N/A 

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

Guidance on measurement techniques must follow the applied 

methodology. 

Purpose of data Calibration and validation of the DSM model 

Comments 
DSM model validation must occur by the first project verification and 

subsequently at least once every five years.  
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APPENDIX 1: ASSESSMENT BY INDEPENDENT 

MODELING EXPERT (IME) 
This appendix describes the step-wise process for the assessment of a DSM model by an IME according 

to the following steps: 

2) The project proponent must generate a DSM-MVR to demonstrate the validity and use of the 

DSM model consistent with the guidance and requirements of the CN0137 tool (Appendix 4). 

3) A VVB must contract an IME to review the DSM-MVR. The VVB may select an IME approved by 

Verra or contract a new IME. New IMEs must fulfill minimum qualifications defined by Verra (see 

"Minimum IME qualifications" below). 

4) The IME must assess the DSM-MVR and generate an IME assessment report that: 

a. Assesses the quality of calibration data (e.g., soil core measurements, environmental 

covariates, remote sensing data) and the overall measurement uncertainty; 

b. Confirms that the calibration procedure meets the requirements stated in Section 5.1; 

c. Confirms that the samples used for validation follow the guidelines in Sections 5.1 and 

5.2. The assessment report must explicitly confirm that validation samples were 

acquired exclusively within the project area, that the depth or depth range of validation 

samples matches the depth or depth range of the target methodology, and that the 

validation samples are a representative probability sample of the project area or that 

unsampled units can be treated as “missing at random” as defined in Section 5.2.1.  

d. Confirms that the model passes the three validation tests: coverage, goodness of fit, 

and bias, as described in Section 5.1. Where DSM has been used to initialize and/or 

true-up a biogeochemical model (BGCM), the IME must confirm that the uncertainty 

propagation procedures in APPENDIX 5 have been correctly implemented. 

Project proponents must promptly respond to inquiries and requests for consultation from the 

IME, including submission of additional documentation. The burden of proof in the IME 

assessment process rests with the project proponent. 

5) The IME assessment report must be submitted to the VVB for approval alongside other project 

documentation. The IME must keep the VVB apprised of questions and resolved findings 

related to the DSM-MVR, and should provide documentation to the VVB justifying its 

recommendation. The VVB has ultimate responsibility for approval of the DSM-MVR.  

All DSM-MVRs and IME assessment reports will be made public alongside project documentation in the 

Verra registry. 
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Minimum Qualifications of IMEs 

Verra defines minimum qualifications that IMEs must fulfill to perform an evaluation of the use of DSM 

models following CN0137 tool guidance. To provide an assessment report, the IME – an individual  – 

must meet the following criteria: 

1) Demonstrated competence in quantifying SOC stocks and/or stock changes using DSM. 

Specialization in certain practices, land uses, and regional/country expertise may be relevant. 

The IME must have at least five years of relevant work experience. 

2) Stated ability to assess DSM model types based on demonstrated use of statistical and/or 

machine learning procedures for DSM. Prospective IMEs may demonstrate expertise through 

peer-reviewed scientific publication(s) appearing in the Web of Science: Science Citation Index, 

or by submitting relevant project reports. 

3) Demonstrated ability to assess uncertainty in DSM predictions, including methods to account 

for spatial covariance in model prediction errors. 

4) Demonstrated freedom from conflict of interest. This must be established by disclosing all 

relevant organizational and financial affiliations that could potentially undermine the integrity 

of the IME review process. 

5) Recommendation by two references, preferably research scientists with public, private, or 

government affiliations, including but not limited to academia. 

The IME Qualification Form must be used to provide evidence demonstrating that the IME meets the 

above criteria. The IME Qualification Form will be provided on the Verra webpage if this tool is approved 

and becomes active in the VCS program. 
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APPENDIX 2: ILLUSTRATIVE SCENARIOS FOR 

PROJECT QUANTIFICATION LIFECYCLE 
In addition to the example shown in Figure 1, the following illustrative scenarios are based on common 

ALM project structures. These scenarios indicate a variety of non-exhaustive possible options for how 

VCS program guidelines (project validation, project verification) integrate with guidelines in the tool 

related to model validation, model revalidation and true-up, and optional intermediate verification. Note 

that the model re-calibration between model re-validation periods is only necessary when using DSM in 

a measure re-measure approach, for example VM0042 Quantification Approach 2. 
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APPENDIX 3: MODEL ARCHITECTURES AND 

COVARIATES 
More than 1000 peer-reviewed academic journal articles have been written in the field of DSM with an 

explicit focus on SOC content, BD, or SOC stock, and how these quantities change over time. Sixteen 

influential publications that include a wide range of model architectures and covariates are 

summarized below.  

McBratney, A.B., Mendonça Santos, M.L., Minasny, B., 2003. On digital soil mapping. Geoderma 117, 

3–52. https://doi.org/10.1016/S0016-7061(03)00223-4 

Proposes a framework for digital soil mapping. This review discusses a wide range of model 

architectures, including generalized linear models, classification and regression trees, neural networks, 

fuzzy systems, and geostatistical tools. The authors generalize the state factor framework originally 

developed by Jenny (1941) by discussing covariates related to soil, climate, organisms, parent material, 

age and spatial or geographic position. 

Gomez, C., Viscarra Rossel, R.A., McBratney, A.B., 2008. Soil organic carbon prediction by 

hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. 

Geoderma 146, 403–411. https://doi.org/10.1016/j.geoderma.2008.06.011 

Combines partial least squares regression with visible and near infrared spectral data from proximal 

and spaceborne sensors to predict SOC as a percentage by mass in northwestern New South Wales, 

Australia. Spaceborne remote sensing was from the NASA Hyperion sensor on the EO-1 spacecraft. This 

sensor provided coverage of the 400 – 2,500 nm spectral range using a spectral sampling interval of 

approximately 10 nm.  

Adhikari, K., Hartemink, A.E., Minasny, B., Bou Kheir, R., Greve, M.B., Greve, M.H., 2014. Digital 

Mapping of Soil Organic Carbon Contents and Stocks in Denmark. PLoS ONE 9, e105519. 

https://doi.org/10.1371/journal.pone.0105519 

Uses regression kriging, a geostatistical technique, to predict SOC content, BD and SOC stock in 

Denmark. The authors used 18 continuous and categorical predictors related to land use and soils, 

hydrology, surface topography, climate and solar insolation. 

Lacoste, M., Minasny, B., McBratney, A., Michot, D., Viaud, V., Walter, C., 2014. High resolution 3D 

mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma 213, 

296–311. https://doi.org/10.1016/j.geoderma.2013.07.002 

Uses Cubist, a rule-based regression method, to predict SOC content and BD in cropland areas of 

France. Covariates included topographic properties derived from a high-resolution lidar digital elevation 

model, geological and land use data, and a map of A-horizon thickness. 
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Ratnayake, R.R., Karunaratne, S.B., Lessels, J.S., Yogenthiran, N., Rajapaksha, R.P.S.K., 

Gnanavelrajah, N., 2016. Digital soil mapping of organic carbon concentration in paddy growing soils of 

Northern Sri Lanka. Geoderma Regional 7, 167–176. https://doi.org/10.1016/j.geodrs.2016.03.002 

Uses linear mixed models to predict SOC content in rice cropping in Sri Lanka. The study used 

topographic climatic, biological and spatial covariates, including satellite remote sensing from the 

Landsat sensor. 

Hengl, T., Jesus, J.M. de, Heuvelink, G.B.M., Gonzalez, M.R., Kilibarda, M., B lagotić, A., Shangguan, W., 
Wright, M.N., Geng, X., Bauer-Marschallinger, B., Guevara, M.A., Vargas, R., MacMillan, R.A., 

Batjes, N.H., Leenaars, J.G.B., Ribeiro, E., Wheeler, I., Mantel, S., Kempen, B., 2017. 

SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE 12, 

e0169748. https://doi.org/10.1371/journal.pone.0169748 

Uses random forest, gradient boosting, and multinomial logistic regression, to map SOC content, bulk 

density, SOC stocks, and other soil properties globally up to a depth of 30 cm. Covariates included 

numerous climate variables, topographic measurements from a digital elevation model, and land cover 

information from global satellite products.  

Ramcharan, A., Hengl, T., Nauman, T., Brungard, C., Waltman, S., Wills, S., Thompson, J., 2018. Soil 

Property and Class Maps of the Conterminous United States at 100‐Meter Spatial Resolution. 

Soil Sci. Soc. Am. j. 82, 186–201. https://doi.org/10.2136/sssaj2017.04.0122 

Uses random forest to predict SOC content, bulk density, and other soil properties in the United States. 

The model used a wide range of covariates, including a digital elevation model and derived topographic 

properties, long-term climate data, hydrological variables, optical remote sensing measurements from 

the NASA Landsat and MODIS sensors and previously generated SOC maps and soil data.  

Castaldi, F., Hueni, A., Chabrillat, S., Ward, K., Buttafuoco, G., Bomans, B., Vreys, K., Brell, M., van 

Wesemael, B., 2019. Evaluating the capability of the Sentinel 2 data for soil organic carbon 

prediction in croplands. ISPRS Journal of Photogrammetry and Remote Sensing 147, 267–282. 

https://doi.org/10.1016/j.isprsjprs.2018.11.026 

Uses Partial Least Squares Regression and Random Forest, an ensemble machine learning method 

that builds decision trees for classification and regression. The authors applied these architectures to 

multispectral satellite data from the European Space Agency Sentinel-2 sensor, and to airborne 

spectral measurements from two hyperspectral sensors: the Airborne Prism Experiment (APEX) and a 

commercial off-the-shelf sensor from the Norwegian company Norsk Elektro Optikk (NEO). These 

sensors provide coverage throughout the visible, near infrared, and shortwave infrared spectrum. The 

workflow was used to predict SOC as a percentage by mass in Germany, Belgium and Luxembourg. 

Gomes, L.C., Faria, R.M., De Souza, E., Veloso, G.V., Schaefer, C.E.G.R., Filho, E.I.F., 2019. Modelling 

and mapping soil organic carbon stocks in Brazil. Geoderma 340, 337–350. 

https://doi.org/10.1016/j.geoderma.2019.01.007 
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Uses Random Forest, Cubist (a rule-based regression method), Generalized Linear Model Boosting and 

Support Vector Machines to predict SOC content in Brazil. Covariates included 74 measurements of 

surface topography from a digital elevation model, vegetation indices and climate variables.  

Dvorakova, K., Shi, P., Limbourg, Q., Van Wesemael, B., 2020. Soil Organic Carbon Mapping from 

Remote Sensing: The Effect of Crop Residues. Remote Sensing 12, 1913. 

https://doi.org/10.3390/rs12121913 

Uses Partial Least Squares Regression to predict SOC content in Belgium. Covariates were from two 

remote sensing instruments: APEX and Sentinel-2. APEX is an airborne hyperspectral sensor with 

coverage throughout visible, near infrared and short-wave infrared regions. Sentinel-2 is a multispectral 

satellite sensor. The study used two spectral indices to examine the impact of crop residue on SOC 

prediction: the Cellulose Absorption Index (CAI) and the Normalized Burn Ratio 2 (NBR2). The study 

demonstrates that using the CAI to remove pixels with residue coverage can improve the performance 

of SOC prediction.  

Dvorakova, K., Heiden, U., van Wesemael, B., 2021. Sentinel-2 Exposed Soil Composite for Soil Organic 

Carbon Prediction. Remote Sensing 13, 1791. https://doi.org/10.3390/rs13091791 

Uses Partial Least Squares Regression to predict SOC content in croplands. The study used Sentinel-2 

multispectral satellite data as covariates and created composite images to isolate exposed soil. 

Composites were assembled using thresholds applied to spectral indices, including the Normalized 

Difference Vegetation Index (NDVI), and NBR2. This study demonstrates the use of time series filtering 

based vegetation phenology to select data for SOC prediction. The authors argue that these methods 

minimize the influence of crop residues, surface roughness and soil moisture. 

Heuvelink, G.B.M., Angelini, M.E., Poggio, L., Bai, Z., Batjes, N.H., Van Den Bosch, R., Bossio, D., Estella, 

S., Lehmann, J., Olmedo, G.F., Sanderman, J., 2021. Machine learning in space and time for modelling 

soil organic carbon change. European J Soil Science 72, 1607–1623. 

https://doi.org/10.1111/ejss.12998 

Uses a quantile regression forest to predict SOC stock in Argentina. Covariates included topographic 

measurements and derived properties from a digital elevation model, land cover, long-term climate 

variables and geological data in addition to measurements from two NASA spaceborne instruments: the 

Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution 

Radiometer (AVHRR).  

Poggio, L., de Sousa, L.M., Batjes, N.H., Heuvelink, G.B.M., Kempen, B., Ribeiro, E., Rossiter, D., 2021. 

SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 

7, 217–240. https://doi.org/10.5194/soil-7-217-2021 

Employs a quantile regression forest to predict SOC content, BD and other soil properties using an 

approach similar to Hengl et al. (2017). Covariates included more than 400 environmental variables, 

including long-term climate proxies, bioclimatic regions, geological properties, land use and landcover 

data, topographic measurements from a digital elevation model, vegetation indices and optical 

measurements from spaceborne remote sensing and hydrological variables. 
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Sothe, C., Gonsamo, A., Arabian, J., Snider, J., 2022. Large scale mapping of soil organic carbon 

concentration with 3D machine learning and satellite observations. Geoderma 405, 115402. 

https://doi.org/10.1016/j.geoderma.2021.115402 

Uses a quantile regression forest to predict SOC content in Canada. The analysis used 40 covariates 

that included long-term climate data, optical remote sensing summaries, soil properties, topographic 

measurements from a digital elevation model, and data from a spaceborne synthetic aperture radar 

(SAR). 

Zhou, Y., Chartin, C., Van Oost, K., Van Wesemael, B., 2022. High-resolution soil organic carbon 

mapping at the field scale in Southern Belgium (Wallonia). Geoderma 422, 115929. 

https://doi.org/10.1016/j.geoderma.2022.115929 

Uses gradient boosting to predict SOC content for agricultural fields in Belgium. Covariates were NDVI 

from optical remote sensing, elevation, clay content, precipitation and organic carbon input from crops.  

Ugbemuna Ugbaje, S., Karunaratne, S., Bishop, T., Gregory, L., Searle, R., Coelli, K., Farrell, M., 2024. 

Space-time mapping of soil organic carbon stock and its local drivers: Potential for use in carbon 

accounting. Geoderma 441, 116771. https://doi.org/10.1016/j.geoderma.2023.116771 

Uses a quantile regression forest to predict SOC stock at multiple points in time in Australia. Covariates 

included soil properties, topography, weather and climate variables, in addition to satellite-derived 

quarterly optical indices. This study applied a time-weighted term to increase the importance of recently 

acquired covariates and demonstrates how time series covariates can be integrated into a DSM 

workflow.  

  

https://doi.org/10.1016/j.geoderma.2022.115929
https://doi.org/10.1016/j.geoderma.2023.116771
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APPENDIX 4: GUIDANCE ON REQUIREMENTS 

FOR MODEL VALIDATION REPORTS 
This appendix describes required components of the DSM-MVR. Additional details regarding the timing 

of submission of the DSM-MVR are in APPENDIX 2. 

Model Architecture:  

• Components, processing of input data, and generation of predictions (see Section 0). If 

localized models are used to make predictions in different parts of the project area, each 

localized model and the conditions that govern its use must be enumerated (e.g., decision 

rules). 

• Justification and citation for the model architecture. 

• Description and justification for how predictive standard deviations were generated. 

• Model source code and/or executables and/or citation, under stable versioning (as a private 

appendix). 

• Whether or not hyperparameter tuning was employed, and if so, a statement describing how 

tuning was conducted in a manner independent of validation data. 

Covariates and Feature Engineering: 

• List of model covariates and the data sources for their raw data. 

• Description of feature engineering methods used to prepare the covariates. 

• Source code for the feature engineering methods, if relevant, as a private appendix. 

Soil Sampling for Validation 

• Sampling design used for validation. 

• Soil sampling data (locations using the appropriate EPSG code and observed values as a 

private appendix). 

Calibration Data External to the Project, if any: 

• Number of sample sites and dataset references, if applicable.  

• Soil sampling data (locations using the appropriate EPSG code and observed values as a 

private appendix). 

• Description of any harmonization procedures applied (e.g. depth alignment, harmonization 

across lab analysis procedures, sensor inter-calibration). 
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Model Validation: 

• Attestation of the independence of calibration and validation data and how this independence 

was maintained. 

• Validation design and justification within the chosen soil sampling design. 

• Validation summary statistics for the three required tests (goodness of fit, coverage, and bias). 

Uncertainty Propagation Methods: 

• Evaluation and justification of the project variogram with candidate alternatives (if applicable). 

• Description of and justification of the uncertainty propagation procedure.  

• Computer code implementing the uncertainty propagation method (as a private appendix.) 
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APPENDIX 5: MONTE CARLO ERROR 

PROPAGATION WHEN USING DSM TO INITIALIZE 

AND/OR TRUE-UP A BGCM  
Predicted SOC stock in prediction support unit i at time t (𝑆𝑂�̂�𝑖,𝑡) may be used to initialize and/or true-

up at BGCM in accordance with the target methodology. Depending on the target methodology and 

version of the target methodology, there are different requirements for the lowest level unit of land that 

is represented by a single BGCM simulation. In some cases, this unit may be the point level (e.g. for a 

single point in space represented by a soil sample), and in others this may be an areal level (e.g. a 

single polygon representing a sample unit or stratum). Guidance is provided below for both cases. 

When the BGCM is applied on a point basis, procedures for the integration of DSM with a BGCM under 

Use Case 1 follow those described in VM0042 applied to soil spectroscopy tools.  

1) Initialize the SOC stock (and/or SOC percentage and bulk density, if required) input value to the 

BGCM by drawing a sample from the predictive distribution in prediction support unit i at time t. 

When the BGCM is initialized using SOC stock, this distribution has a mean equal to 𝑆𝑂�̂�𝑖,𝑡 and 

a standard deviation equal to 𝜎𝑠.  

2) Run the BGCM in accordance with the target methodology. 

3) When the target methodology permits Monte Carlo propagation of error, repeat steps 1 – 2 for 

each instance, l, of the Monte Carlo simulation. Compute the total estimate of uncertainty in 

accordance with the target methodology.  

When the BGCM is applied on an areal basis, the BGCM is initialized using a predictive distribution of 

the mean SOC stock at time t (𝑆𝑂�̂�𝑡) for the target area (e.g. sample unit or stratum). This distribution 

has a mean given by Equation 3, and a variance computed using the methods in Section 6.3. 

Uncertainty of BGCM output is calculated in accordance with the target methodology. 
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APPENDIX 6: EXAMPLE UNCERTAINTY 

CALCULATION 
This appendix is available as an HTML supplement (link).  

  

https://verra.org/wp-content/uploads/2025/02/Appendix-6.html
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APPENDIX 7: ACCOUNTING FOR THE 

COVARIANCE OF MODEL PREDICTION ERRORS 
Project proponents must use a valid method to account for the covariance of model prediction errors 

when estimating the variance of spatial averages. In most cases, this will involve a spatially explicit 

method. The steps below describe how an IME can determine whether the method used by a project 

proponent is permissible under the tool. The method developed by Wadoux and Heuvelink (2023) is 

acceptable without further justification. However, all methods require: 

• Validity of the method’s implementation 

The project proponent must provide software or code that demonstrates the implementation of 

the method. This should be compared with the method description in a valid publication and 

confirmed to be accurate. 

When the method used to account for spatial covariance in variance estimates of spatial averages is 

not the method developed by Wadoux and Heuvelink (2023), it must be confirmed that: 

• The method itself is valid 

The method must be described in at least one peer-reviewed article published in a reputable, 

subject-specific journal where demonstrating the method is the primary focus of the article or 

in a reputable academic textbook. The publication or textbook must illustrate the method by 

applying it to the spatially aggregated total or average of some quantity from a map generated 

by a statistical model. 

• The method must be valid within this application 

The method must be appropriate for the project's prediction support unit. For example, a method 

designed for use over larger areas, like fields, may not be suitable for individual point data. If the 

publication or book does not explicitly account for the spatial covariance of model errors (e.g., 

McRoberts et al., 2022), the project proponent must demonstrate that the impact of spatial covariance 

is minimal. This can be shown using spatial covariance statistics of residual errors (e.g., spatial 

autocorrelation measures among fields or counties) or other statistical techniques (e.g., as discussed in 

McRoberts et al., 2022). 
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